
EXAM

Advanced Functional Programming

TDA340/INN260

DAY: 19/12 2006 TIME: 8.30 – 12.30 PLACE: V-huset

Responsible: Koen Lindström Claessen, 772 5424

Result: Announced latest January 10th

Aids: None

Grade: At least 30p are required to pass

Note the following:

• Answers can be given in English or Swedish
• Put page numbers on each paper sheet
• Start each assignment on a new page
• Write your personal number on all pages
• Please read every assignment carefully before you answer
• Write clearly; unreadable = wrong!
• Less points are given for unnecessarily long-winded, complicated,

or unstructured solutions
• Write down clearly if you make assumptions that are not mentioned

in the assignment

Good luck!

1

Exam AFP, TDA340/INN260, LP2, HT06 2

Assignment 1 — Monads (20p)

(a) Explain the concept of a monad in Haskell, what it usually models, and what
its typical applications are.

(b) What is the advantage of capturing the monad concept in a type class?

(c) Give three examples of “standard” monads in Haskell. For each monad, explain
what it does, give its type declaration, list its special operations and their
implementation, and give its monad type class instance.

(d) For one such monad, give a (small) example (using Haskell code) of how it can
be used. Explain what your example does.

(e) Describe the three monad laws, that relate the functions (>>=) and return.

(f) For each law, explain what it says, and also whay this is a reasonable thing to
require of a monad.

Assignment 2 — Monad Transformers (20p)

(a) Explain the concept of a monad transformer. What activity do monad trans-
formers enable that regular monads do not enable?

(b) Describe the implementation of the state monad transformer, adding the fea-
ture of an updatable state to any monad. Assume the name of the type is
StateT s m a, where s is the type of the state, and m is the underlying monad.
Give the type declaration, and the implementations of its special operations,
its monad type class instance, and its lift function.

Take a look at the following datatype declaration for simplified arithmetic C-expressions.
In C, apart from talking about numbers, an arithmetic expression can have a side effect,
such as assigning a new value to a variable, or printing a string on the screen.

type Var = String

data CExpr

= Num Int

| Add CExpr CExpr

| Var Var

| Var := CExpr

| Print String

deriving (Show)

In order to be able to deal with variables and values, we define the concept of a store,
that keeps track of the values of variables.

Exam AFP, TDA340/INN260, LP2, HT06 3

type Store = [(Var,Int)]

When we evaluate a C-expression, we need to know the values of the variables. As a
result, we produce the final answer, together with the updated store, and the output
that was produced. Evaluating an expression can go wrong as well, for example when
a variable is used without being in the store. Thus, we end up with the following
evaluation function.

eval :: Store -> CExpr -> Maybe (Int, Store, [String])

eval st (Num n) = Just (n, st, [])

eval st (Add a b) = case eval st a of

Just (n, st1, o1) ->

case eval st1 b of

Just (m, st2, o2) ->

Just (n+m, st2, o1++o2)

_ -> Nothing

_ -> Nothing

eval st (Var v) = case lookup v st of

Just n -> Just (n, st, [])

Nothing -> Nothing

eval st (x := a) = case eval st a of

Just (n, st’, o) -> Just (n, (x,n):st’, o)

eval st (Print s) = Just (0, st, [s])

(c) Which three distinct monads can you identify in the above?

(d) Define a monad that the above eval function can use, and re-implement the
eval function using it.
You are allowed to use standard monad transformers, but you do not have to.

Assignment 3 — Embedded Languages (20p)

In this assignment, you will think about the design and implementation of an embedded
language for ASCII art. As always, the embedded language should be compositional,
i.e. we want to create large complex images out of small simple images.

Here is an example of something we would like to describe:

+---+---+---+ +-----+

| A | B | C +---+ apa |

+---+---+---+ +--+--+

|

+-+-+

| f |

| o |

| o |

+---+

Exam AFP, TDA340/INN260, LP2, HT06 4

Typical things you would like in your pictures are: boxes, horizontal lines, vertical lines,
horizontal text, vertical text, etc.

(a) Design an API for the above embedded language. This should consist of:
appropriate names of types, and names and types of creation functions, com-
bination functions, and run functions. For each function, describe briefly what
it is supposed to do.
Here, try to keep the role of each function as simple as possible, but add enough
combinators to allow to describe the picture above, for example.

(b) Which of the functions in your API are primitive (i.e. you can express the
others in terms of the primitive ones)? Give the definitions of the non-primitive
functions in terms of the primitive functions.

(c) What are the advantages of embedding your API as a library over inventing
your own language, and have your program read in image descriptions from a
text file? Mention advantages from the programmer’s (= you) point of view,
as well as the user’s point of view.

(d) What properties (or laws) do your functions have? Mention at least three
non-trivial such ways in which your functions interact.

(e) Describe what a shallow implementation (i.e. you implement ASCII images
semantically) could look like. Give a type definition, and describe (in words)
what each of your primitive functions, as well as your run function, would do.

(f) Describe what a deep implementation (i.e. you implement ASCII images by
the way they were created) could look like. Give a type definition, and describe
(in words) what each of your primitive functions, as well as your run function,
would do.

(g) Discuss at least one advantage for each of the two implementation approaches.

(total 60p)

