
Interpreter for a Functional Language

Krasimir Angelov

Chalmers University of Technology

February 25, 2010



Objective

Write an interpreter for a small, untyped functional programming
language. The interpreter should walk through programs and print
out the value of the main function.

The interpreter should implement either:

I call-by-name and call-by-value

I Alternative - call-by-need



Language Specification

I A program is a sequence of definitions, which are terminated
by semicolons. A definition is a function name followed by a
(possibly empty) list of variable names followed by the
equality sign = followed by an expression:

fun x1 . . . xn = exp ;

I An expression is one of these:

precedence expression example

3 identifier foo
3 integer 512
2 application f x
1 operation 3 + x
0 conditional if c then a else b
0 abstraction \x → x + 1



Example

mult x y =
if (y < 1) then 0 else if (y < 2) then x else (x + (mult x (y-1))) ;

fact = \x → if (x < 3) then x else mult x (fact (x-1)) ;

main = fact 6 ;



Language Specification

The definition:

fun x1 . . . xn = exp ;

is just syntactic sugar for:

fun = \x1 → . . . \xn → exp ;



Run-time type checking

The language is dynamically checked i.e. during the execution you
should check that:

I all variables/functions are defined

I all expressions are well-typed



Success Criteria

I The interpreter must give acceptable results for the test suite
and meet the specification in the lab PM in all respects.

I All ”good” programs must work with at least one of the
strategies i.e. call-by-name or call-by-value.

I The interpreter works in call-by-value by default
I If option -n is given then it should switch to call-by-name
I Alternative: Implement only one strategy - call-by-need

I The solution must be written in an easily readable and
maintainable way.



Semantics

The semantics is defined as sequence of statements:

Γ ` e ⇓ v

where:

I Γ - the environment i.e. mapping from function name to
function definition.

I e - the current expression to be evaluated

I v - the value

Alternatively you could see this as function definition:

eval(Γ, e) = v



Semantics: Rules

Γ, fun := body ` body ⇓ value

Γ, fun := body ` fun ⇓ value

Γ ` const ⇓ const

Γ ` (\x → body) ⇓ (\x → body)

Γ ` c ⇓ i , i 6= 0 Γ ` e1 ⇓ v

Γ ` (if c then e1 else e2) ⇓ v

Γ ` c ⇓ 0 Γ ` e2 ⇓ v

Γ ` (if c then e1 else e2) ⇓ v

Γ ` e1 ⇓ v1 Γ ` e2 ⇓ v2

Γ ` e1 + e2 ⇓ v1 + v2



Semantics: Call by name vs Call by value

I Call by value: evaluate argument before substitution

Γ ` fun ⇓ (\x → body) Γ ` arg ⇓ val Γ ` body [val/x] ⇓ result

Γ ` (fun arg) ⇓ result

I Call by name: substitute first, then evaluate

Γ ` fun ⇓ (\x → body) Γ ` body [arg/x] ⇓ result

Γ ` (fun arg) ⇓ result



The problem with substitution

(\x → \y → x + y) 1 2

= ((\y → x + y)[1/x ]) 2

= (\y → (x)[1/x ] + (y)[1/x ]) 2

= (\y → 1 + y) 2

= (1 + y)[2/y ]

= (1)[2/y ] + (y)[2/y ]

= 1 + 2



Solution - Use Closures
We extend the set of values with a special value for closures i.e.
the value is either Integer or Closure.

Γ ` (\x → body) ⇓ Clos Γ (\x → body)

Γ ` fun ⇓ Clos ∆ (\x → body) ∆, x := arg ` body ⇓ result

Γ ` (fun arg) ⇓ result
call-by-name

Γ ` fun ⇓ Clos ∆ (\x → body) Γ ` arg ⇓ val ∆, x := val ` body ⇓ result

Γ ` (fun arg) ⇓ result
call-by-value

Recall!

Γ, fun := body ` body ⇓ value

Γ, fun := body ` fun ⇓ value



Less steps needed!

(\x → \y → x + y) 1 2

= ((\y → x + y)[1/x ]) 2

= (x + y)[2/y , 1/x ]

= (x)[2/y , 1/x ] + (y)[2/y , 1/x ]

= 1 + 2



Evaluation Strategies: Comparison

I call-by-value:
I Pros: more efficient on the current hardware
I Cons: reasonable programs may not terminate

I call-by-name:
I Pros: program that could terminate, terminates
I Cons: impractical due to its computational complexity

I call-by-need:
I Pros: combines call-by-value and call-by-name
I Cons: sometimes difficult to reason about it



The shortest way to call-by-need

The shortest way requres destructive updates and this is what is
used in practice:

1. Implement call-by-name

2. Change the implementation of the environment to contain
mutable references to expressions.



Mutable References

In Haskell - use module Data.IORef or Data.STRef:

If you were using:

type Env = [(String, Value)]

replace it with:

type Env = [(String, IORef Value)]



Mutable References

I In Java, if you use java.util.ArrayList then you don’t have to
change anything, it is already mutable.

Env = java.util.ArrayList<Binding>

class Binding {
String varName;
Value val;

}



Mutable References

Modify the implementation of this two rules:

I When accessing a variable, after the evaluation, update the
environment:

Γ, fun := body ` body ⇓ value

Γ, fun := value ` fun ⇓ value

I When adding a variable to the environment, in Haskell you
have to create a new IORef/STRef:

Γ ` fun ⇓ Clos ∆ (\x → body) ∆, x := arg ` body ⇓ result

Γ ` (fun arg) ⇓ result



Mutable References

In pseudocode:

e := lookup env x
if e is evaluated

then return e
else e := eval e; update env x e



One More Problem

Look at this rule again:

Γ, fun := body ` body ⇓ value

Γ, fun := body ` fun ⇓ value

Here we lookup values by variable name which is expensive
operation!



SOLUTION: de Bruijn Indices

Instead of variable names:

\x → \y → x + y

Use indexes:

\x → \y → #1 + #0

The index is the number of bindings from right to left!

We don’t need the variable names in the environment anymore:

type Env = [IORef Value]



More About Compiling Functional Languages

Simon Peyton Jones and David Lester. Implementing Functional
Languages: a tutorial. Published by Prentice Hall, 1992.

http://research.microsoft.com/en-us/um/people/
simonpj/papers/pj-lester-book/

http://research.microsoft.com/en-us/um/people/simonpj/papers/pj-lester-book/
http://research.microsoft.com/en-us/um/people/simonpj/papers/pj-lester-book/


Consequences of Dynamic vs Static

I Advantage: Since the language is dynamically checked we
could write some programs which are not possible otherwise:

firefox = 1 ;
calc x y = if firefox then x + y else plus x y ;
plus x y = . . .

I Disadvantage: No static guarantees at all and usually less
efficient.



Summary

Write an interpreter for a small, untyped functional programming
language.

http://www.cse.chalmers.se/edu/course/TIN321/
laborations/lab4/lab4.html

http://www.cse.chalmers.se/edu/course/TIN321/laborations/lab4/lab4.html
http://www.cse.chalmers.se/edu/course/TIN321/laborations/lab4/lab4.html

