

Parsing Expressions

Koen Lindström Claessen

Expressions

• Such as
– 5*2+12
– 17+3*(4*3+75)

• Can be modelled as a datatype

data Expr
 = Num Int
 | Add Expr Expr
 | Mul Expr Expr

Showing and Reading

• We have seen how to write

• This lecture: How to write

showExpr :: Expr -> String

readExpr :: String -> Expr

Main> showExpr (Add (Num 2) (Num 4))
”2+4”
Main> showExpr (Mul (Add (Num 2) (Num 3)) (Num 4)
(2+3)*4

built-in show
function produces

ugly results

built-in read
function does not
match showExpr

Parsing

• Transforming a ”flat” string into something
with a richer structure is called parsing
– expressions
– programming languages
– natural language (swedish, english, dutch)
– ...

• Very common problem in computer
science
– Many different solutions

Expressions

• Let us start with a simpler problem
• How to parse

data Expr
 = Num Int
 | Add Expr Expr
 | Mul Expr Expr

data Expr
 = Num Int but we keep in mind

that we want to
parse real

expressions...

Parsing Numbers

number :: String -> Int

Main> number ”23”
23
Main> number ”apa”
?
Main> number ”23+17”
?

Parsing Numbers

• Parsing a string to a number, there are three
cases:
– (1) the string is a number, e.g. ”23”
– (2) the string is not a number at all, e.g. ”apa”
– (3) the string starts with a number, e.g. ”17+24”

how to model
these?

type Parser a = String -> Maybe (a, String)

Case (1)
and (3)

are
similar...

Parsing Numbers

number :: String -> Maybe (Int,String)

Main> number ”23”
Just (23, ””)
Main> number ”117junk”
Just (117, ”junk”)
Main> number ”apa”
Nothing
Main> number ”23+17”
Just (23, ”+17”)

how to
implement?

number :: Parser Int

Parsing Numbers

number :: Parser Int
number (c:s) | isDigit c = Just (digits 0 (c:s))
number _ = Nothing

digits :: Int -> String -> (Int,String)
digits n (c:s) | isDigit c = digits (10*n + digitToInt c) s
digits n s = (n,s)

a helper
function

with an extra
argument

import Data.Char at the top of
your file

Parsing Numbers

Main> num ”23”
Just (Num 23, ””)
Main> num ”apa”
Nothing
Main> num ”23+17”
Just (Num 23, ”+17”)

number :: Parser Int

num :: Parser Expr
num s = case number s of
 Just (n, s’) -> Just (Num n, s’)
 Nothing -> Nothing

a case
expression

Expressions

• Expressions are now of the form
– ”23”
– ”3+23”
– ”17+3+23+14+0”

data Expr
 = Num Int
 | Add Expr Expr

a chain of numbers
with ”+”

Parsing Expressions

expr :: Parser Expr

Main> expr ”23”
Just (Num 23, ””)
Main> expr ”apa”
Nothing
Main> expr ”23+17”
Just (Add (Num 23) (Num 17), ””)
Main> expr ”23+17mumble”
Just (Add (Num 23) (Num 17), ”mumble”)

Parsing Expressions

expr :: Parser Expr
expr = ?

expr :: Parser Expr
expr s1 = case num s1 of
 Just (a,s2) -> case s2 of
 ’+’:s3 -> case expr s3 of
 Just (b,s4) -> Just (Add a b, s4)
 Nothing -> Just (a,s2)
 _ -> Just (a,s2)
 Nothing -> Nothing

start with a
number?

is there a +
sign? can we parse

another expr?

Expressions

• Expressions are now of the form
– ”23”
– ”3+23*4”
– ”17*3+23*5*7+14”

data Expr
 = Num Int
 | Add Expr Expr
 | Mul Expr Expr

a chain of terms
with ”+”

a chain of factors
with ”*”

Expression Grammar

• expr ::= term “+” ... “+” term

• term ::= factor “*” ... “*” factor

• factor ::= number

Parsing Expressions

expr :: Parser Expr
expr s1 = case num s1 of
 Just (a,s2) -> case s2 of
 ’+’:s3 -> case expr s3 of
 Just (b,s4) -> Just (Add a b, s4)
 Nothing -> Just (a,s2)
 _ -> Just (a,s2)
 Nothing -> Nothing

expr :: Parser Expr
expr s1 = case term s1 of
 Just (a,s2) -> case s2 of
 ’+’:s3 -> case expr s3 of
 Just (b,s4) -> Just (Add a b, s4)
 Nothing -> Just (a,s2)
 _ -> Just (a,s2)
 Nothing -> Nothing

term :: Parser Expr
term = ?

Parsing Terms

term :: Parser Expr
term s1 = case factor s1 of
 Just (a,s2) -> case s2 of
 ’*’:s3 -> case term s3 of
 Just (b,s4) -> Just (Mul a b, s4)
 Nothing -> Just (a,s2)
 _ -> Just (a,s2)
 Nothing -> Nothing

just copy the code
from expr and make

some changes!

NO!!

chain :: Parser a -> Char -> (a->a->a) -> Parser a

Parsing Chains

chain p op f s1 =
 case p s1 of
 Just (a,s2) -> case s2 of
 c:s3 | c == op -> case chain p op f s3 of
 Just (b,s4) -> Just (f a b, s4)
 Nothing -> Just (a,s2)
 _ -> Just (a,s2)
 Nothing -> Nothing

argument p

argument op recursion argument f

expr, term :: Parser Expr
expr = chain term ’+’ Add
term = chain factor ’*’ Mul

a higher-order
function

Factor?

factor :: Parser Expr
factor = num

Parentheses

• So far no parentheses
• Expressions look like

– 23
– 23+5*17
– 23+5*(17+23*5+3)

a factor can be a
parenthesized

expression again

Expression Grammar

• expr ::= term “+” ... “+” term

• term ::= factor “*” ... “*” factor

• factor ::= number
 | “(“ expr “)”

Factor

factor :: Parser Expr
factor (’(’:s) =
 case expr s of
 Just (a, ’)’:s1) -> Just (a, s1)
 _ -> Nothing

factor s = num s

Reading an Expr

readExpr :: String -> Maybe Expr
readExpr s = case expr s of
 Just (a,””) -> Just a
 _ -> Nothing

Main> readExpr ”23”
Just (Num 23)
Main> readExpr ”apa”
Nothing
Main> readExpr ”23+17”
Just (Add (Num 23) (Num 17))

Summary

• Parsing becomes easier when
– Failing results are explicit
– A parser also produces the rest of the string

• Case expressions
– To look at an intermediate result

• Higher-order functions
– Avoid copy-and-paste programming

The Code (1)
readExpr :: String -> Maybe Expr
readExpr s = case expr s of
 Just (a,””) -> Just a
 _ -> Nothing

expr, term :: Parser Expr
expr = chain term ’+’ Add
term = chain factor ’*’ Mul

factor :: Parser Expr
factor (’(’:s) =
 case expr s of
 Just (a, ’)’:s1) -> Just (a, s1)
 _ -> Nothing
factor s = num s

The Code (2)
chain :: Parser a -> Char -> (a->a->a) -> Parser a
chain p op f s1 =
 case p s1 of
 Just (a,s2) -> case s2 of
 c:s3 | c == op -> case chain p op f s3 of
 Just (b,s4) -> Just (f a b, s4)
 Nothing -> Just (a,s2)
 _ -> Just (a,s2)
 Nothing -> Nothing
number :: Parser Int
number (c:s) | isDigit c = Just (digits 0 (c:s))
number _ = Nothing

digits :: Int -> String -> (Int,String)
digits n (c:s) | isDigit c = digits (10*n + digitToInt c) s
digits n s = (n,s)

Testing readExpr

prop_ShowRead :: Expr -> Bool
prop_ShowRead a =
 readExpr (show a) == Just a

Main> quickCheck prop_ShowRead
Falsifiable, after 3 tests:
-2*7+3

negative
numbers?

Fixing the Number Parser

number :: Parser Int
number (c:s) | isDigit c = Just (digits 0 (c:s))
number ('-':s) = fmap neg (number s)
number _ = Nothing

fmap :: (a -> b) -> Maybe a -> Maybe b
fmap f (Just x) = Just (f x)
fmap f Nothing = Nothing

neg :: (Int,String) -> (Int,String)
neg (x,s) = (-x,s)

Testing again

Main> quickCheck prop_ShowRead
Falsifiable, after 5 tests:
2+5+3

Testing again

Main> quickCheck prop_ShowRead
Falsifiable, after 5 tests:
2+5+3

Add (Add (Num 2) (Num 5)) (Num 3)

Add (Num 2) (Add (Num 5) (Num 3))

“2+5+5”

show

read

Testing again

Main> quickCheck prop_ShowRead
Falsifiable, after 5 tests:
2+5+3

Add (Add (Num 2) (Num 5)) (Num 3)

Add (Num 2) (Add (Num 5) (Num 3))

“2+5+5”

show

read

+ (and *) are
associative

Fixing the Property (1)

prop_ShowReadEval :: Expr -> Bool
prop_ShowReadEval a =
 fmap eval (readExpr (show a)) == Just (eval a)

Main> quickCheck prop_ShowReadEval
OK, passed 100 tests.

The result does not have to be exactly the same,
as long as the value does not change.

assoc :: Expr -> Expr
assoc (Add (Add a b) c) = assoc (Add a (Add b c))
assoc (Add a b) = Add (assoc a) (assoc b)
assoc (Mul (Mul a b) c) = assoc (Mul a (Mul b c))
assoc (Mul a b) = Mul (assoc a) (assoc b)
assoc a = a

Fixing the Property (2)

prop_ShowReadAssoc :: Expr -> Bool
prop_ShowReadAssoc a =
 readExpr (show a) == Just (assoc a)

Main> quickCheck prop_ShowReadAssoc
OK, passed 100 tests.

non-trivial
recursion and

pattern matching

(study this definition
and what this
function does)

The result does not have to be exactly the same,
only after rearranging associative operators

Properties about Parsing

• We have checked that readExpr correctly
processes anything produced by
showExpr

• Is there any other property we should
check?
– What can still go wrong?
– How to test this?

Very difficult!

Summary

• Testing a parser:
– Take any expression,
– convert to a String (show),
– convert back to an expression (read),
– check if they are the same

• Some structural information gets lost
– associativity!
– use “eval”
– use “assoc”

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

