

Introduction to Programming in
Haskell

Chalmers & GU

Koen Lindström Claessen

Programming

• Exciting subject at the heart of computing
• Never programmed?

– Learn to make the computer obey you!

• Programmed before?
– Lucky you! Your knowledge will help a lot...
– ...as you learn a completely new way to program

• Everyone will learn a great deal from this course!

Goal of the Course

• Start from the basics, after
Datorintroduktion

• Learn to write small-to-medium sized
programs in Haskell

• Introduce basic concepts of computer
science

The Flow

You prepare
in advance

I explain
in lecture

You learn
with exercises

You put to practice
with lab assignments

Tuesdays,Fridays

Mondays

Submit end of each week

Do not break the
flow!

Exercise Sessions
• Mondays

– Group rooms

• Come prepared
• Work on exercises together
• Discuss and get help from tutor

– Personal help

• Make sure you understand this week’s
things before you leave

Lab Assignments
• Work in pairs

– (Almost) no exceptions!
• Lab supervision

– Book a time in advance
– One time at a time!

• Start working on lab when you have understood
the matter

• Submit end of each week
• Feedback

– Return: The tutor has something to tell you; fix and
submit again

– OK: You are done

even this
week!

bring pen
and paper

Getting Help

• Weekly group sessions
– personal help to understand material

• Lab supervision
– specific questions about programming

assignment at hand

• Discussion forum
– general questions, worries, discussions

Assessment

• Written exam (4.5 credits)
– Consists of small programming problems to

solve on paper
– You need Haskell ”in your fingers”

• Course work (3 credits)
– Complete all labs successfully

A Risk

• 7 weeks is a short time to learn
programming

• So the course is fast paced
– Each week we learn a lot
– Catching up again is hard

• So do keep up!
– Read the lecture notes each week
– Make sure you can solve the problems
– Go to the weekly exercise sessions
– From the beginning

Course Homepage

• The course homepage will have ALL up-to-
date information relevant for the course
– Schedule
– Lab assignments
– Exercises

– Last-minute changes
– (etc.)

http://www.cse.chalmers.se/edu/course/TDA555/

Or go via the student
portal

Software

Software = Programs + Data

Data
Data is any kind of storable information. Examples:

•Numbers

•Letters

•Email messages

•Songs on a CD

•Maps

•Video clips

•Mouse clicks

•Programs

Programs

Programs compute new data from old data.

Example: Skyrim computes a sequence of screen images
and sounds from a sequence of mouse clicks.

Building Software Systems
A large system may contain many millions of lines of code.

Software systems are among the most complex artefacts ever
made.

Systems are built by combining existing components as far as
possible.

Volvo buys engines
from Mitsubishi.

Facebook buys video
player from Adobe

Programming Languages

Programs are written in programming languages.

There are hundreds of different programming languages, each
with their strengths and weaknesses.

A large system will often contain components in many
different languages.

Programming Languages
C

Haskell Java

ML

O’CaML

C++

C#

Prolog

Perl

Python

Ruby

PostScript

SQL

Erlang

PDF

bash

JavaScript

Lisp
Scheme

BASIC

csh

VHDL

Verilog

Lustre

Esterel

Mercury

Curry

which language
should we teach?

Programming Language Features

polymorphism

higher-order
functions

statically
typed

parameterized
types

overloading

type
classes

object
oriented

reflection

meta-
programming

compiler

virtual
machine

interpreter

pure
functions

lazy
high

performance

type
inference

dynamically
typed

immutable
datastructures

concurrency

distribution

real-time

Haskell unification

backtracking

Java

C

Teaching Programming

• Give you a broad basis
– Easy to learn more programming languages

– Easy to adapt to new programming languages
• Haskell is defining state-of-the-art in programming

language development

– Appreciate differences between languages

– Become a better programmer!

”Functional Programming”

• Functions are the basic building blocks of
programs

• Functions are used to compose these
building blocks into larger programs

• A (pure) function computes results from
arguments – consistently the same

Industrial Uses of Functional
Languages

Intel (microprocessor
verification)

Hewlett Packard (telecom event
correlation)

Ericsson (telecommunications)

Jeppesen (air-crew scheduling)

Facebook (chat engine)

Credit Suisse (finance)

Barclays Capital (finance)

Hafnium (automatic
transformation tools)

Shop.com (e-commerce)

Motorola (test generation)

Thompson (radar tracking)

Microsoft (F#)

Jasper (hardware verification)

And many more!

Computer Sweden,
2010

Why Haskell?
•Haskell is a very high-level language (many details taken care
of automatically).

•Haskell is expressive and concise (can achieve a lot with a
little effort).

•Haskell is good at handling complex data and combining
components.

•Haskell is not a high-performance language (prioritise
programmer-time over computer-time).

Cases and Recursion

Example: The squaring function

• Example: a function to compute

-- sq x returns the square of x
sq :: Integer -> Integer
sq x = x * x

Evaluating Functions

• To evaluate sq 5:
– Use the definition—substitute 5 for x

throughout
• sq 5 = 5 * 5

– Continue evaluating expressions
• sq 5 = 25

• Just like working out mathematics on paper

sq x = x * x

Example: Absolute Value

• Find the absolute value of a number

-- absolute x returns the absolute value of x
absolute :: Integer -> Integer
absolute x = undefined

Example: Absolute Value

• Find the absolute value of a number

• Two cases!
– If x is positive, result is x
– If x is negative, result is -x

-- absolute x returns the absolute value of x
absolute :: Integer -> Integer
absolute x | x > 0 = undefined
absolute x | x < 0 = undefined

Programs must often
choose between

alternatives

Think of the cases!
These are guards

Example: Absolute Value

• Find the absolute value of a number

• Two cases!
– If x is positive, result is x
– If x is negative, result is -x

-- absolute x returns the absolute value of x
absolute :: Integer -> Integer
absolute x | x > 0 = x
absolute x | x < 0 = -x

Fill in the result in
each case

Example: Absolute Value

• Find the absolute value of a number

• Correct the code

-- absolute x returns the absolute value of x
absolute :: Integer -> Integer
absolute x | x >= 0 = x
absolute x | x < 0 = -x

>= is greater than
or equal, ¸

Evaluating Guards

• Evaluate absolute (-5)
– We have two equations to use!

– Substitute
• absolute (-5) | -5 >= 0 = -5
• absolute (-5) | -5 < 0 = -(-5)

absolute x | x >= 0 = x
absolute x | x < 0 = -x

Evaluating Guards

• Evaluate absolute (-5)
– We have two equations to use!

– Evaluate the guards
• absolute (-5) | False = -5
• absolute (-5) | True = -(-5)

absolute x | x >= 0 = x
absolute x | x < 0 = -x

Discard this
equation

Keep this one

Evaluating Guards

• Evaluate absolute (-5)
– We have two equations to use!

– Erase the True guard
• absolute (-5) = -(-5)

absolute x | x >= 0 = x
absolute x | x < 0 = -x

Evaluating Guards

• Evaluate absolute (-5)
– We have two equations to use!

– Compute the result
• absolute (-5) = 5

absolute x | x >= 0 = x
absolute x | x < 0 = -x

Notation

• We can abbreviate repeated left hand sides

• Haskell also has if then else

absolute x | x >= 0 = x
absolute x | x < 0 = -x

absolute x | x >= 0 = x
 | x < 0 = -x

absolute x = if x >= 0 then x else -x

Example: Computing Powers

• Compute (without using built-in x^n)

Example: Computing Powers

• Compute (without using built-in x^n)

• Name the function

power

Example: Computing Powers

• Compute (without using built-in x^n)

• Name the inputs

power x n = undefined

Example: Computing Powers

• Compute (without using built-in x^n)

• Write a comment

-- power x n returns x to the power n
power x n = undefined

Example: Computing Powers

• Compute (without using built-in x^n)

• Write a type signature

-- power x n returns x to the power n
power :: Integer -> Integer -> Integer
power x n = undefined

How to Compute power?

• We cannot write
– power x n = x * … * x

n times

A Table of Powers

• Each row is x* the previous one

• Define power x n to compute the nth row

n power x n

0 1

1 x

2 x*x

3 x*x*x

A Definition?

• Testing:
Main> power 2 2

ERROR - stack overflow

power x n = x * power x (n-1)

Why?

A Definition?

• Testing:
– Main> power 2 2

– Program error: pattern match failure: power 2 0

power x n | n > 0 = x * power x (n-1)

A Definition?

• Testing:
– Main> power 2 2

– 4

power x 0 = 1
power x n | n > 0 = x * power x (n-1)

First row
of the
table

The BASE CASE

Recursion

• First example of a recursive function
– Defined in terms of itself!

• Why does it work? Calculate:
– power 2 2 = 2 * power 2 1
– power 2 1 = 2 * power 2 0
– power 2 0 = 1

power x 0 = 1
power x n | n > 0 = x * power x (n-1)

Recursion

• First example of a recursive function
– Defined in terms of itself!

• Why does it work? Calculate:
– power 2 2 = 2 * power 2 1
– power 2 1 = 2 * 1
– power 2 0 = 1

power x 0 = 1
power x n | n > 0 = x * power x (n-1)

Recursion

• First example of a recursive function
– Defined in terms of itself!

• Why does it work? Calculate:
– power 2 2 = 2 * 2
– power 2 1 = 2 * 1
– power 2 0 = 1

power x 0 = 1
power x n | n > 0 = x * power x (n-1)

No circularity!

Recursion

• First example of a recursive function
– Defined in terms of itself!

• Why does it work? Calculate:
– power 2 2 = 2 * power 2 1
– power 2 1 = 2 * power 2 0
– power 2 0 = 1

power x 0 = 1
power x n | n > 0 = x * power x (n-1)

The STACK

Recursion

• Reduce a problem (e.g. power x n) to a
smaller problem of the same kind

• So that we eventually reach a ”smallest”
base case

• Solve base case separately

• Build up solutions from smaller solutions

Powerful problem solving strategy
in any programming language!

Replication

• Replicate a given word n times

repli :: Integer -> String -> String
repli ...

GHCi> repli 3 “apa”
“apaapaapa”

An Answer

repli :: Integer -> String -> String
repli 1 s = s
repli n s | n > 1 = s ++ repli (n-1) s

repli :: Integer -> String -> String
repli 0 s = “”
repli n s | n > 0 = s ++ repli (n-1) s

repli :: Integer -> String -> String
repli 1 s = s
repli n s | n > 1 = s ++ repli (n-1) s

make base case
as simple as

possible!

Counting the regions

• n lines. How many regions?
remove

one line ...

problem
is easier!

when do
we stop?

A Solution

• Don't forget a base case

regions :: Integer -> Integer
regions 1 = 2
regions n | n > 1 = regions (n-1) + n

A Better Solution

• Always pick the base case as simple as
possible!

regions :: Integer -> Integer
regions 0 = 1
regions n | n > 0 = regions (n-1) + n

Group

• Divide up a string into groups of length n

group :: ...
group n s = ...

Types

• What are the types of repli and group?

repli :: Integer -> String -> String
group :: Integer -> String -> [String]

repli :: Integer -> [a] -> [a]
group :: Integer -> [a] -> [[a]]

There is no book!

If you want a book anyway, try:

The Craft of Functional Programming, by
Simon Thompson. Available at Cremona.

Course Web Pages

URL:

http://www.cse.chalmers.se/edu/course/TDA555/

Updated almost
daily!

•These slides

•Schedule

•Practical information

•Assignments

•Discussion board

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

