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Exercises

Did you go to the
exercises yesterday?



  

Lab Assignments

• Total of 4 assignments
– Power function
– BlackJack (2 parts)
– Sudoku (2 parts)
– Graphical calculator (2 parts)



  

Each Lab has Three Deadlines
• First deadline:

– initial part of the lab
– serious try

• Second deadline: 1 week later
– complete lab
– serious try
– not perfect -- feedback

• Final deadline: 1.5 weeks later
– Can submit several times over this period
– Each time you get new feedback
– Final, correct solution has to be submitted before final 

deadline

deadlines 
are hard



  

Lab Feedback

• -- Your function f does not work

– Denote something that has to be corrected and submitted again

• == Your function f is a bit too complicated

– Denote something that has to be corrected only if the lab has to be 
submitted anyway

• ** I see you have solved the problem

– Just a regular comment, nothing to correct

• ++ Your implementation of f is better than mine!

– Something extra good, should of course not be corrected

symbols



  

Missing a Deadline

• Submitting after the deadline
– In principle: Unacceptable
– Submit what you have done

• even if it is not finished
• You might get one more chance

– Good reason: Contact us BEFORE the deadline

• New opportunity: Next year!



  

Cheating (fusk)

• UNACCEPTABLE
– Using someone else’s code
– Showing your code to someone else

• Copying
• E-mailing
• Printing
• Pen-and-paper writing

– Copying code from the web



  

Instead…

• If you have problems
– Talk to us (course assistants)
– We are nice, reasonable people

• More time (if needed)
• More help

– Wait until next year
– DO NOT CHEAT!



  

If Cheating Happens… 

• We report this to
– Disciplinary board (Chalmers)
– Disciplinary board (GU)

• You might be suspended (”avstängd”)
– 1 – 3 months (no studiemedel)
– This has actually happened...

• You might be expelled



  

Cheating Detection
• Lab graders

– Discovery of similar solutions
– Similar:

• Changing comments
• Changing layout
• Changing names of functions and variables

• At the end of the course
– Automatic software system

• Pairwise similarity of solutions



  

Allowed
• Orally discuss exercises
• Orally discuss lab assignments
• Orally discuss solutions

• Web-based discussion board
– General questions
– Specific questions
– Finding a lab partner
– …



  

Lab Assignments

• Booking lists
– Book one block at a time

• Extra assignments
– For your own pleasure
– No bonus points



  

Att Lämna In

• Skapa en grupp i Fire
– 2 personer (inte 1, inte 3)
– Båda två ska gå med i gruppen

• ”Submit” i Fire
– klicka på ”submit” efter uppladdningen av 

filerna



  

”Clean Code”
• Before you submit your code, clean it up!

– Polite thing to do
– Easier for us to understand your code
– Easier for you to understand your code!
– We will reject your solution if it is not clean
– Important!

• To clean your code:
– No long lines (<78 characters)
– Consistent layout
– Good comments
– No ”junk” – unused code, unneccessary comments
– No overly complicated function definitions



  

Kursevaluering

• Kursen utvärderas av er
– 3 studentrepresentanter
– kursenkät

• Prata med representanterna
– kommentar
– förslag



  

Recursive Datatypes and Lists

Koen Lindström Claessen



  

Types vs. Constructors

data Card = Card Rank Suit

a type

a function a constructor 
function

colourCard :: Card -> Colour
colourCard (Card r s) = colour s

the type

the constructor 
function



  

Types vs. Constructors

data Card = MkCard Rank Suit

a type

a constructor 
function

colourCard :: Card -> Colour
colourCard (MkCard r s) = colour s

the type

the constructor 
function



  

Reminder: Modelling a Hand

• A Hand is either:
– An empty hand

– Formed by adding a card to a smaller hand

• Discarding the first card:

data Hand = Empty | Add Card Hand
    deriving Show

discard :: Hand -> Hand
discard (Add c h) = h



  

Lists
-- how they work



  

Lists

• A list is either:
– An empty list

– Formed by adding an element to a smaller list

• What to put on the place of the ??

data List = Empty | Add ?? List



  

Lists

• A type parameter

• Add 12 (Add 3 Empty) :: List Integer

• Add ”apa” (Add ”bepa” Empty) :: List String

data List a = Empty | Add a (List a)



  

Lists

• Empty :: List Integer

• Empty :: List Bool

• Empty :: List String

• ...

data List a = Empty | Add a (List a)



  

Lists

• Can represent 0, 1, 2, … things
– [], [3], [”apa”,”katt”,”val”,”hund”]

• They all have the same type
– [1,3,True,”apa”] is not allowed

• The order matters
– [1,2,3] /= [3,1,2]

• Syntax
– 5 : (6 : (3 : [])) == 5 : 6 : 3 : [] == [5,6,3]
– ”apa” == [’a’,’p’,’a’]



  

Different Notation

data List a = Empty
                   | Some a (List a)

data [a] =  []
              |  a : [a]

uttal: ”cons”



  

More Notation

length :: [a] -> Int

[12]

12 : [] 

[12, 0, 3, 17, 123]

12 : (0 : (3 : (17 : (123 : [])))) 

list with one 
element

list-type



  

Quiz

• Vad är typen på funktionen [] ?

• Vad är typen på funktionen (:) ?

[] :: [a]

(:) :: a -> [a] -> [a]



  

Programming Examples

• empty

• first / last

• maximum

• append (+++)

• reverse (rev)

• value :: String -> Integer

• (see files Lists0.hs and Lists1.hs)



  

Lists

• Can represent 0, 1, 2, … things
– [], [3], [”apa”,”katt”,”val”,”hund”]

• They all have the same type
– [1,3,True,”apa”] is not allowed

• The order matters
– [1,2,3] /= [3,1,2]

• Syntax
– 5 : (6 : (3 : [])) == 5 : 6 : 3 : [] == [5,6,3]
– ”apa” == [’a’,’p’,’a’]



  

More on Types

• Functions can have ”general” types:
– polymorphism

– reverse :: [a] -> [a]

– (++) :: [a] -> [a] -> [a]

• Sometimes, these types can be restricted
– Ord a => … for comparisons (<, <=, >, >=, …)

– Eq a => … for equality (==, /=)

– Num a => … for numeric operations (+, -, *, …)



  

Do’s and Don’ts

isBig :: Integer -> Bool
isBig n | n > 9999  = True
            | otherwise = False

isBig :: Integer -> Bool
isBig n = n > 9999

guards and 
boolean results



  

Do’s and Don’ts

resultIsSmall :: Integer -> Bool
resultIsSmall n = isSmall (f n) == True

resultIsSmall :: Integer -> Bool
resultIsSmall n = isSmall (f n)

comparison 
with a boolean 

constant



  

Do’s and Don’ts

resultIsBig :: Integer -> Bool
resultIsBig n = isSmall (f n) == False

resultIsBig :: Integer -> Bool
resultIsBig n = not (isSmall (f n))

comparison 
with a boolean 

constant



  

Do’s and Don’ts

fun1 :: [Integer] -> Bool
fun1 []        = False
fun1 (x:xs) = length (x:xs) == 10 

fun1 :: [Integer] -> Bool
fun1 xs = length xs == 10

repeated code

necessary case 
distinction?

Do not make 
unnecessary case 

distinctions



  

Do’s and Don’ts

fun2 :: [Integer] -> Integer
fun2 [x]      = calc x
fun2 (x:xs) = calc x + fun2 xs 

fun2 :: [Integer] -> Integer
fun2 []        = 0
fun2 (x:xs) = calc x + fun2 xs

repeated code

right base 
case ?

Make the base 
case as simple as 

possible
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