

Some Practical Information
+

Programming with Lists

Koen Lindström Claessen

Exercises

Did you go to the
exercises yesterday?

Lab Assignments

• Total of 4 assignments
– Power function
– BlackJack (2 parts)
– Sudoku (2 parts)
– Graphical calculator (2 parts)

Each Lab has Three Deadlines
• First deadline:

– initial part of the lab
– serious try

• Second deadline: 1 week later
– complete lab
– serious try
– not perfect -- feedback

• Final deadline: 1.5 weeks later
– Can submit several times over this period
– Each time you get new feedback
– Final, correct solution has to be submitted before final

deadline

deadlines
are hard

Lab Feedback

• -- Your function f does not work

– Denote something that has to be corrected and submitted again

• == Your function f is a bit too complicated

– Denote something that has to be corrected only if the lab has to be
submitted anyway

• ** I see you have solved the problem

– Just a regular comment, nothing to correct

• ++ Your implementation of f is better than mine!

– Something extra good, should of course not be corrected

symbols

Missing a Deadline

• Submitting after the deadline
– In principle: Unacceptable
– Submit what you have done

• even if it is not finished
• You might get one more chance

– Good reason: Contact us BEFORE the deadline

• New opportunity: Next year!

Cheating (fusk)

• UNACCEPTABLE
– Using someone else’s code
– Showing your code to someone else

• Copying
• E-mailing
• Printing
• Pen-and-paper writing

– Copying code from the web

Instead…

• If you have problems
– Talk to us (course assistants)
– We are nice, reasonable people

• More time (if needed)
• More help

– Wait until next year
– DO NOT CHEAT!

If Cheating Happens… 

• We report this to
– Disciplinary board (Chalmers)
– Disciplinary board (GU)

• You might be suspended (”avstängd”)
– 1 – 3 months (no studiemedel)
– This has actually happened...

• You might be expelled

Cheating Detection
• Lab graders

– Discovery of similar solutions
– Similar:

• Changing comments
• Changing layout
• Changing names of functions and variables

• At the end of the course
– Automatic software system

• Pairwise similarity of solutions

Allowed
• Orally discuss exercises
• Orally discuss lab assignments
• Orally discuss solutions

• Web-based discussion board
– General questions
– Specific questions
– Finding a lab partner
– …

Lab Assignments

• Booking lists
– Book one block at a time

• Extra assignments
– For your own pleasure
– No bonus points

Att Lämna In

• Skapa en grupp i Fire
– 2 personer (inte 1, inte 3)
– Båda två ska gå med i gruppen

• ”Submit” i Fire
– klicka på ”submit” efter uppladdningen av

filerna

”Clean Code”
• Before you submit your code, clean it up!

– Polite thing to do
– Easier for us to understand your code
– Easier for you to understand your code!
– We will reject your solution if it is not clean
– Important!

• To clean your code:
– No long lines (<78 characters)
– Consistent layout
– Good comments
– No ”junk” – unused code, unneccessary comments
– No overly complicated function definitions

Kursevaluering

• Kursen utvärderas av er
– 3 studentrepresentanter
– kursenkät

• Prata med representanterna
– kommentar
– förslag

Recursive Datatypes and Lists

Koen Lindström Claessen

Types vs. Constructors

data Card = Card Rank Suit

a type

a function a constructor
function

colourCard :: Card -> Colour
colourCard (Card r s) = colour s

the type

the constructor
function

Types vs. Constructors

data Card = MkCard Rank Suit

a type

a constructor
function

colourCard :: Card -> Colour
colourCard (MkCard r s) = colour s

the type

the constructor
function

Reminder: Modelling a Hand

• A Hand is either:
– An empty hand

– Formed by adding a card to a smaller hand

• Discarding the first card:

data Hand = Empty | Add Card Hand
 deriving Show

discard :: Hand -> Hand
discard (Add c h) = h

Lists
-- how they work

Lists

• A list is either:
– An empty list

– Formed by adding an element to a smaller list

• What to put on the place of the ??

data List = Empty | Add ?? List

Lists

• A type parameter

• Add 12 (Add 3 Empty) :: List Integer

• Add ”apa” (Add ”bepa” Empty) :: List String

data List a = Empty | Add a (List a)

Lists

• Empty :: List Integer

• Empty :: List Bool

• Empty :: List String

• ...

data List a = Empty | Add a (List a)

Lists

• Can represent 0, 1, 2, … things
– [], [3], [”apa”,”katt”,”val”,”hund”]

• They all have the same type
– [1,3,True,”apa”] is not allowed

• The order matters
– [1,2,3] /= [3,1,2]

• Syntax
– 5 : (6 : (3 : [])) == 5 : 6 : 3 : [] == [5,6,3]
– ”apa” == [’a’,’p’,’a’]

Different Notation

data List a = Empty
 | Some a (List a)

data [a] = []
 | a : [a]

uttal: ”cons”

More Notation

length :: [a] -> Int

[12]

12 : []

[12, 0, 3, 17, 123]

12 : (0 : (3 : (17 : (123 : []))))

list with one
element

list-type

Quiz

• Vad är typen på funktionen [] ?

• Vad är typen på funktionen (:) ?

[] :: [a]

(:) :: a -> [a] -> [a]

Programming Examples

• empty

• first / last

• maximum

• append (+++)

• reverse (rev)

• value :: String -> Integer

• (see files Lists0.hs and Lists1.hs)

Lists

• Can represent 0, 1, 2, … things
– [], [3], [”apa”,”katt”,”val”,”hund”]

• They all have the same type
– [1,3,True,”apa”] is not allowed

• The order matters
– [1,2,3] /= [3,1,2]

• Syntax
– 5 : (6 : (3 : [])) == 5 : 6 : 3 : [] == [5,6,3]
– ”apa” == [’a’,’p’,’a’]

More on Types

• Functions can have ”general” types:
– polymorphism

– reverse :: [a] -> [a]

– (++) :: [a] -> [a] -> [a]

• Sometimes, these types can be restricted
– Ord a => … for comparisons (<, <=, >, >=, …)

– Eq a => … for equality (==, /=)

– Num a => … for numeric operations (+, -, *, …)

Do’s and Don’ts

isBig :: Integer -> Bool
isBig n | n > 9999 = True
 | otherwise = False

isBig :: Integer -> Bool
isBig n = n > 9999

guards and
boolean results

Do’s and Don’ts

resultIsSmall :: Integer -> Bool
resultIsSmall n = isSmall (f n) == True

resultIsSmall :: Integer -> Bool
resultIsSmall n = isSmall (f n)

comparison
with a boolean

constant

Do’s and Don’ts

resultIsBig :: Integer -> Bool
resultIsBig n = isSmall (f n) == False

resultIsBig :: Integer -> Bool
resultIsBig n = not (isSmall (f n))

comparison
with a boolean

constant

Do’s and Don’ts

fun1 :: [Integer] -> Bool
fun1 [] = False
fun1 (x:xs) = length (x:xs) == 10

fun1 :: [Integer] -> Bool
fun1 xs = length xs == 10

repeated code

necessary case
distinction?

Do not make
unnecessary case

distinctions

Do’s and Don’ts

fun2 :: [Integer] -> Integer
fun2 [x] = calc x
fun2 (x:xs) = calc x + fun2 xs

fun2 :: [Integer] -> Integer
fun2 [] = 0
fun2 (x:xs) = calc x + fun2 xs

repeated code

right base
case ?

Make the base
case as simple as

possible

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

