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Software

Software = Programs + Data



  

Modelling Data

• A big part of designing software is 
modelling the data in an appropriate way

• Numbers are not good for this!

• We model the data by defining new types



  

Modelling a Card Game

• Every card has a suit

• Model by a new type:

data Suit = Spades | Hearts | Diamonds | Clubs

The new 
type

The values 
of this type

Hearts, 
Whist, 
Plump, 

Bridge, ...



  

Investigating the new type

Main> :i Suit
-- type constructor
data Suit

-- constructors:
Spades :: Suit
Hearts :: Suit
Diamonds :: Suit
Clubs :: Suit

Main> :i Spades
Spades :: Suit  -- data constructor 

The new type

The new values
-- constructors

Types and 
constructors 
start with a 
capital letter



  

Printing Values

• Fix

Main> Spades
ERROR - Cannot find "show" function for:
*** Expression : Spades
*** Of type    : Suit

Main> :i show
show :: Show a => a -> String  -- class member

Needed to print 
values

data Suit = Spades | Hearts | Diamonds | Clubs
    deriving Show

Main> Spades
Spades 



  

The Colours of Cards

• Each suit has a colour – red or black

• Model colours by a type

• Define functions by pattern matching

data Colour = Black | Red
    deriving Show

colour :: Suit -> Colour
colour Spades = Black
colour Hearts = Red
colour Diamonds = Red
colour Clubs = Black

One equation per value

Main> colour Hearts
Red 



  

The Ranks of Cards

• Cards have ranks: 2..10, J, Q, K, A

• Model by a new type
Numeric ranks

data Rank = Numeric Integer | Jack | Queen | King | Ace
    deriving Show

Main> :i Numeric
Numeric :: Integer -> Rank  -- data constructor 
Main> Numeric 3
Numeric 3

Numeric ranks 
contain an Integer



  

Rank Beats Rank

• When does one rank beat another?

A

K

Q

J

m

n J Q K A

m>n



  

Rank Beats Rank

rankBeats :: Rank -> Rank -> Bool
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Rank Beats Rank

rankBeats :: Rank -> Rank -> Bool
rankBeats _ Ace = False

Matches 
anything at all

Nothing beats an Ace
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Rank Beats Rank

rankBeats :: Rank -> Rank -> Bool
rankBeats _ Ace = False
rankBeats Ace _ = True

Used only if the first 
equation does not 

match.

An Ace beats anything else



  

Rank Beats Rank
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Rank Beats Rank

rankBeats :: Rank -> Rank -> Bool
rankBeats _ Ace = False
rankBeats Ace _ = True
rankBeats _ King = False
rankBeats King _ = True
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Rank Beats Rank

rankBeats :: Rank -> Rank -> Bool
rankBeats _ Ace = False
rankBeats Ace _ = True
rankBeats _ King = False
rankBeats King _ = True
rankBeats _ Queen = False
rankBeats Queen _ = True
rankBeats _ Jack = False
rankBeats Jack _ = True
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Rank Beats Rank

rankBeats :: Rank -> Rank -> Bool
rankBeats _ Ace = False
rankBeats Ace _ = True
rankBeats _ King = False
rankBeats King _ = True
rankBeats _ Queen = False
rankBeats Queen _ = True
rankBeats _ Jack = False
rankBeats Jack _ = True
rankBeats (Numeric m) (Numeric n) = m > n

Match Numeric 7, 
for example

Names the number 
in the rank



  

Examples

Main> rankBeats Jack (Numeric 7)
True
Main> rankBeats (Numeric 10) Queen
False 



  

Modelling a Card

• A Card has both a Rank and a Suit

• Define functions to inspect both

data Card = Card Rank Suit
    deriving Show

rank :: Card -> Rank
rank (Card r s) = r

suit :: Card -> Suit
suit (Card r s) = s



  

A Useful Abbreviation

• Define type and inspection functions 
together, as follows

data Card = Card {rank :: Rank, suit :: Suit}
    deriving Show



  

When does one card beat another?

• When both cards have the same suit, and 
the rank is higher

cardBeats :: Card -> Card -> Bool
cardBeats c c' 
    | suit c == suit c' = rankBeats (rank c) (rank c')
    | otherwise      = False

data Suit = Spades | Hearts | Diamonds | Clubs
    deriving (Show, Eq)

can be written 
down simpler...



  

When does one card beat another?

• When both cards have the same suit, and 
the rank is higher

cardBeats :: Card -> Card -> Bool
cardBeats c c' =  suit c == suit c’
                      && rankBeats (rank c) (rank c')
 



  

Intermezzo: Figures

• Modelling geometrical figures
– triangle

– rectangle
– circle

data Figure = Triangle ...
                    | Rectangle ...
                    | Circle ...

circumference :: Figure -> Double
circumference = ...



  

Intermezzo: Figures

data Figure = Triangle Double Double Double
                    | Rectangle Double Double
                    | Circle Double

circumference :: Figure -> Double
circumference (Triangle a b c) = a + b + c
circumference (Rectangle x y) = 2* (x + y)
circumference (Circle r)           = 2 * pi * r



  

Intermezzo: Figures

data Figure = Triangle Double Double Double
                    | Rectangle Double Double
                    | Circle Double

-- types
Triangle :: Double -> Double -> Double -> Figure
Rectangle :: Double -> Double -> Figure
Circle :: Double -> Figure

square :: Double -> Figure
square s = Rectangle s s



  

Modelling a Hand of Cards

• A hand may contain any number of cards 
from zero up!

• The solution is… recursion!

data Hand = Cards Card … Card
    deriving Show

We can’t 
use …!!!



  

Modelling a Hand of Cards

• A hand may contain any number of cards 
from zero up!
– A hand may be empty
– It may consist of a first card and the rest

• The rest is another hand of cards!

data Hand = Empty | Add Card Hand
    deriving Show

A recursive type!
Solve the problem of 
modelling a hand with 

one fewer cards!

very much like a 
list...



  

When can a hand beat a card?

• An empty hand beats nothing
• A non-empty hand can beat a card if the 

first card can, or the rest of the hand can!

• A recursive function!

handBeats :: Hand -> Card -> Bool
handBeats Empty     card = False
handBeats (Add c h) card = 
    cardBeats c card || handBeats h card



  

What Did We Learn?

• Modelling the problem using datatypes 
with components

• Using recursive datatypes to model things 
of varying size

• Using recursive functions to manipulate 
recursive datatypes

• Writing properties of more complex 
algorithms
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