

Modelling & Datatypes

Koen Lindström Claessen

Software

Software = Programs + Data

Modelling Data

• A big part of designing software is
modelling the data in an appropriate way

• Numbers are not good for this!

• We model the data by defining new types

Modelling a Card Game

• Every card has a suit

• Model by a new type:

data Suit = Spades | Hearts | Diamonds | Clubs

The new
type

The values
of this type

Hearts,
Whist,
Plump,

Bridge, ...

Investigating the new type

Main> :i Suit
-- type constructor
data Suit

-- constructors:
Spades :: Suit
Hearts :: Suit
Diamonds :: Suit
Clubs :: Suit

Main> :i Spades
Spades :: Suit -- data constructor

The new type

The new values
-- constructors

Types and
constructors
start with a
capital letter

Printing Values

• Fix

Main> Spades
ERROR - Cannot find "show" function for:
*** Expression : Spades
*** Of type : Suit

Main> :i show
show :: Show a => a -> String -- class member

Needed to print
values

data Suit = Spades | Hearts | Diamonds | Clubs
 deriving Show

Main> Spades
Spades

The Colours of Cards

• Each suit has a colour – red or black

• Model colours by a type

• Define functions by pattern matching

data Colour = Black | Red
 deriving Show

colour :: Suit -> Colour
colour Spades = Black
colour Hearts = Red
colour Diamonds = Red
colour Clubs = Black

One equation per value

Main> colour Hearts
Red

The Ranks of Cards

• Cards have ranks: 2..10, J, Q, K, A

• Model by a new type
Numeric ranks

data Rank = Numeric Integer | Jack | Queen | King | Ace
 deriving Show

Main> :i Numeric
Numeric :: Integer -> Rank -- data constructor
Main> Numeric 3
Numeric 3

Numeric ranks
contain an Integer

Rank Beats Rank

• When does one rank beat another?

A

K

Q

J

m

n J Q K A

m>n

Rank Beats Rank

rankBeats :: Rank -> Rank -> Bool

Rank Beats Rank

• When does one rank beat another?

A

K

Q

J

m

n J Q K A

m>n

Rank Beats Rank

• When does one rank beat another?

A

K

Q

J

m

n J Q K A

m>n

Rank Beats Rank

rankBeats :: Rank -> Rank -> Bool
rankBeats _ Ace = False

Matches
anything at all

Nothing beats an Ace

Rank Beats Rank

• When does one rank beat another?

A

K

Q

J

m

n J Q K A

m>n

Rank Beats Rank

rankBeats :: Rank -> Rank -> Bool
rankBeats _ Ace = False
rankBeats Ace _ = True

Used only if the first
equation does not

match.

An Ace beats anything else

Rank Beats Rank

• When does one rank beat another?

A

K

Q

J

m

n J Q K A

m>n

Rank Beats Rank

rankBeats :: Rank -> Rank -> Bool
rankBeats _ Ace = False
rankBeats Ace _ = True
rankBeats _ King = False
rankBeats King _ = True

Rank Beats Rank

• When does one rank beat another?

A

K

Q

J

m

n J Q K A

m>n

Rank Beats Rank

rankBeats :: Rank -> Rank -> Bool
rankBeats _ Ace = False
rankBeats Ace _ = True
rankBeats _ King = False
rankBeats King _ = True
rankBeats _ Queen = False
rankBeats Queen _ = True
rankBeats _ Jack = False
rankBeats Jack _ = True

Rank Beats Rank

• When does one rank beat another?

A

K

Q

J

m

n J Q K A

m>n

Rank Beats Rank

rankBeats :: Rank -> Rank -> Bool
rankBeats _ Ace = False
rankBeats Ace _ = True
rankBeats _ King = False
rankBeats King _ = True
rankBeats _ Queen = False
rankBeats Queen _ = True
rankBeats _ Jack = False
rankBeats Jack _ = True
rankBeats (Numeric m) (Numeric n) = m > n

Match Numeric 7,
for example

Names the number
in the rank

Examples

Main> rankBeats Jack (Numeric 7)
True
Main> rankBeats (Numeric 10) Queen
False

Modelling a Card

• A Card has both a Rank and a Suit

• Define functions to inspect both

data Card = Card Rank Suit
 deriving Show

rank :: Card -> Rank
rank (Card r s) = r

suit :: Card -> Suit
suit (Card r s) = s

A Useful Abbreviation

• Define type and inspection functions
together, as follows

data Card = Card {rank :: Rank, suit :: Suit}
 deriving Show

When does one card beat another?

• When both cards have the same suit, and
the rank is higher

cardBeats :: Card -> Card -> Bool
cardBeats c c'
 | suit c == suit c' = rankBeats (rank c) (rank c')
 | otherwise = False

data Suit = Spades | Hearts | Diamonds | Clubs
 deriving (Show, Eq)

can be written
down simpler...

When does one card beat another?

• When both cards have the same suit, and
the rank is higher

cardBeats :: Card -> Card -> Bool
cardBeats c c' = suit c == suit c’
 && rankBeats (rank c) (rank c')

Intermezzo: Figures

• Modelling geometrical figures
– triangle

– rectangle
– circle

data Figure = Triangle ...
 | Rectangle ...
 | Circle ...

circumference :: Figure -> Double
circumference = ...

Intermezzo: Figures

data Figure = Triangle Double Double Double
 | Rectangle Double Double
 | Circle Double

circumference :: Figure -> Double
circumference (Triangle a b c) = a + b + c
circumference (Rectangle x y) = 2* (x + y)
circumference (Circle r) = 2 * pi * r

Intermezzo: Figures

data Figure = Triangle Double Double Double
 | Rectangle Double Double
 | Circle Double

-- types
Triangle :: Double -> Double -> Double -> Figure
Rectangle :: Double -> Double -> Figure
Circle :: Double -> Figure

square :: Double -> Figure
square s = Rectangle s s

Modelling a Hand of Cards

• A hand may contain any number of cards
from zero up!

• The solution is… recursion!

data Hand = Cards Card … Card
 deriving Show

We can’t
use …!!!

Modelling a Hand of Cards

• A hand may contain any number of cards
from zero up!
– A hand may be empty
– It may consist of a first card and the rest

• The rest is another hand of cards!

data Hand = Empty | Add Card Hand
 deriving Show

A recursive type!
Solve the problem of
modelling a hand with

one fewer cards!

very much like a
list...

When can a hand beat a card?

• An empty hand beats nothing
• A non-empty hand can beat a card if the

first card can, or the rest of the hand can!

• A recursive function!

handBeats :: Hand -> Card -> Bool
handBeats Empty card = False
handBeats (Add c h) card =
 cardBeats c card || handBeats h card

What Did We Learn?

• Modelling the problem using datatypes
with components

• Using recursive datatypes to model things
of varying size

• Using recursive functions to manipulate
recursive datatypes

• Writing properties of more complex
algorithms

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

