Datastructures

Koen Lindström Claessen

Data Structures

- Datatype
 - A model of something that we want to represent in our program
- Data structure
 - A particular way of *storing* data
 - How? Depending on what we want to do with the data
- Today: Two examples
 - Queues
 - Tables

Using QuickCheck to Develop Fast Queue Operations

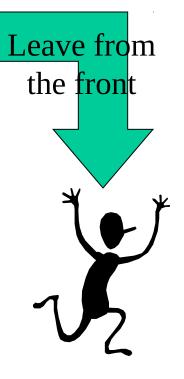
What we're going to do:

- •Explain what a *queue* is, and give *slow* implementations of the queue operations, to act as a specification.
- •Explain the idea behind the fast implementation.
- •Formulate properties that say the fast implementation is "correct".
- •Test them with QuickCheck.

What is a Queue?

Join at the back

- Files to print
- Processes to run
- Tasks to perform



What is a Queue?

A *queue* contains a sequence of values. We can add elements at the back, and remove elements from the front.

We'll implement the following operations:

 empty
 :: Q a

 add
 :: a -> Q a

 remove
 :: Q a -> Q

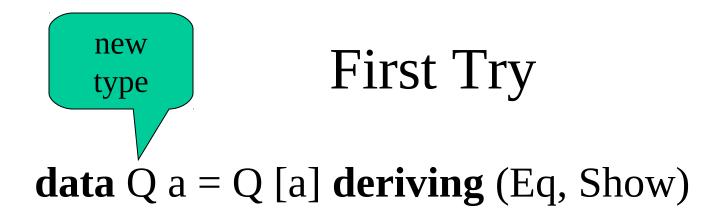
 front
 :: Q a -> Q

 isEmpty
 :: Q a -> Q

-- an empty queue

add :: $a \rightarrow Q a \rightarrow Q a$ -- add an element at the back

- remove :: Q a -> Q a -- remove an element from the front
- front :: Q a -> a -- inspect the front element
- isEmpty :: Q a -> Bool -- check if the queue is empty



empty = Q [] add x (Q xs) = Q (xs++[x]) remove (Q (x:xs)) = Q xs front (Q (x:xs)) = x isEmpty (Q xs) = null xs

Works, but slow

add x (Q xs) = Q (xs++[x])[] ++ ys = ys (x:xs) ++ ys = x : (xs++ys)
As many recursive calls as there are elements in xs

Add 1, add 2, add 3, add 4, add 5... Time is the *square* of the number of additions

A Module

- Implement the result in a *module*
- Use as specification
- Allows the re-use
 - By other programmers
 - Of the same names

SlowQueue Module

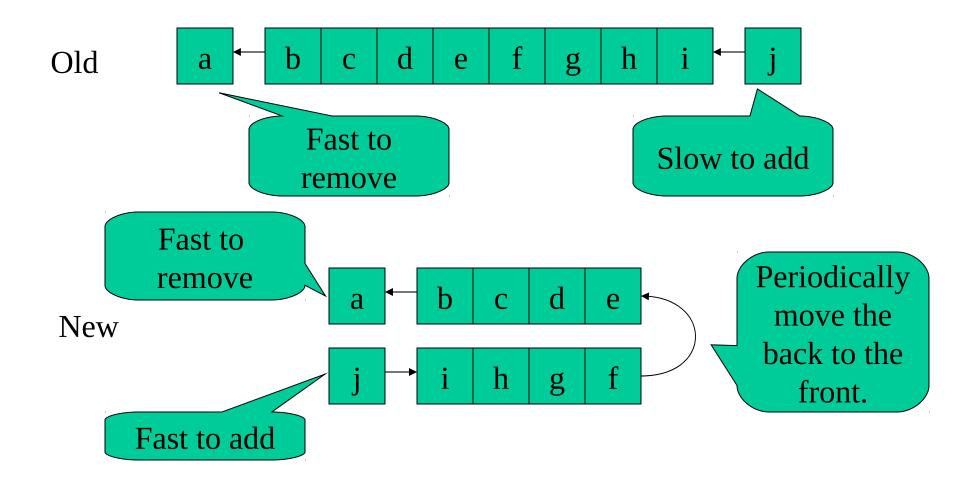
module SlowQueue where

data Q a = Q [a] **deriving** (Eq, Show)

$$empty = Q[]$$

add x (Q xs) = Q (xs++[x])
remove (Q (x:xs)) = Q xs
front (Q (x:xs)) = x
isEmpty (Q xs) = null xs

New Idea: Store the Front and Back Separately



Fast Datatype

data Q a = Q [a] [a]
deriving (Eq, Show)

The front and the back part of the queue.

Fast Operations

empty= Q [] []add x (Q front back)= Q front (x:back)remove (Q (x:front) back)= fixQ front backfront (Q (x:front) back)= xisEmpty (Q front back)= null fro

Flip the queue when we serve the last person in the front

Smart Constructor

fixQ [] back = Q (reverse back) []
fixQ front back = Q front back

This takes *one function call per element* in the back—each element is inserted into the back (one call), flipped (one call), and removed from the front (one call)

How can we test the fast functions?

- By using the original implementation as a *reference*
- The behaviour should be "the same" – Check results
- First version is an *abstract model* that is "obviously correct"

Comparing the Implementations

- They operate on different *types* of queues
- To compare, must convert between them
 - Can we convert a slow Q to a Q?
 - Where should we split the front from the back???
 - Can we convert a Q to a slow Q?

contents (Q front back) = Q (front++reverse back)

• Retrieve the simple "model" contents from the implementation

Accessing modules

import qualified SlowQueue **as** Slow

contents :: Q Int -> Slow.Q Int contents (Q front back) =

Slow.Q (front ++ reverse back)

Qualified name

The Properties The behaviour is the same, except prop_Empty = for type contents empty == Slow.empty conversion $prop_Add x q =$ contents (add x q) == Slow.add x (contents q) prop_Remove q = contents (remove q) == Slow.remove (contents q) prop_Front q = front q == Slow.front (contents q) prop_IsEmpty q = isEmpty q == Slow.isEmpty (contents q)

Generating Qs

instance Arbitrary a => Arbitrary (Q a) where
arbitrary = do front <- arbitrary
 back <- arbitrary
 return (Q front back)</pre>

A Bug!

Queues> quickCheck prop_Remove

*** Failed! Exception: 'Queue.hs:22:0-42: Non-exhaustive patterns in function remove' (after 1 test):

Q [] []

Preconditions

• A condition that *must hold* before a function is called

prop_remove q =
 not (isEmpty q) ==>
 retrieve (remove q) == remove (retrieve q)
prop_front q =
 not (isEmpty q) ==>
 front q == front (retrieve q)

• Useful to be precise about these

Another Bug!

Queues> quickCheck prop_Remove *** Failed! Exception: 'Queue.hs:22:0-42: Non-exhaustive patterns in function remove' (after 2 tests):

But this ought not to happen!

Q[][-1,0]

An Invariant

- Q values ought *never* to have an empty front, and a non-empty back!
- Formulate an *invariant*
 invariant (Q front back) =
 not (null front && not (null back))

Testing the Invariant

prop_Invariant :: Q Int -> Bool
prop_Invariant q = invariant q

• Of course, it fails...

Queues> quickCheck prop_invariant Falsifiable, after 4 tests: Q [] [-1]

Fixing the Generator

instance Arbitrary a => Arbitrary (Q a) where
arbitrary = do front <- arbitrary
 back <- arbitrary
 return (Q front
 (if null front then [] else back))</pre>

• Now prop_Invariant passes the tests

Testing the Invariant

- We've *written down* the invariant
- We've seen to it that we only generate valid Qs as *test data*
- We must ensure that the *queue functions* only build valid Q values!
 - It is at this stage that the invariant is most useful

Invariant Properties

prop_Empty_Inv = invariant empty prop_Add_Inv x q = invariant (add x q) prop_Remove_Inv q = not (isEmpty q) ==>invariant (remove q)

A Bug in the Q operations!

Queues> quickCheck prop_Add_Inv Falsifiable, after 2 tests: 0 Q[][]

Queues> add 0 (Q [] [])

Q [] [0]

The invariant is False!

Fixing add

add x (Q front back) = fixQ front (x:back)

- We must flip the queue when *the first element is inserted* into an empty queue
- Previous bugs were in our understanding (our properties)—this one is in our implementation code

Summary

- Data structures *store data*
- Obeying an *invariant*
- ... that functions and operations
 - can make use of (to search faster)
 - have to respect (to not break the invariant)
- Writing down and testing invariants and properties is a good way of finding errors

Another Datastructure: Tables

A *table* holds a collection of *keys* and associated *values*.

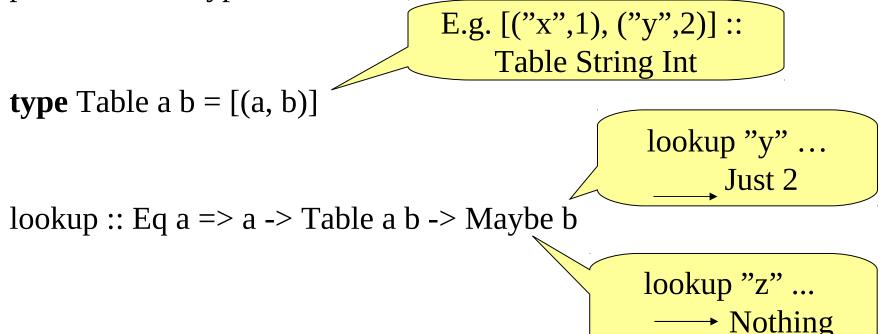
For example, a phone book is a table whose keys are names, and whose values are telephone numbers.

Problem: Given a table and a key, find the associated value.

John Hughes	1001
Mary Sheeran	1013
Koen Claessen	5424
Hans Svensson	1079

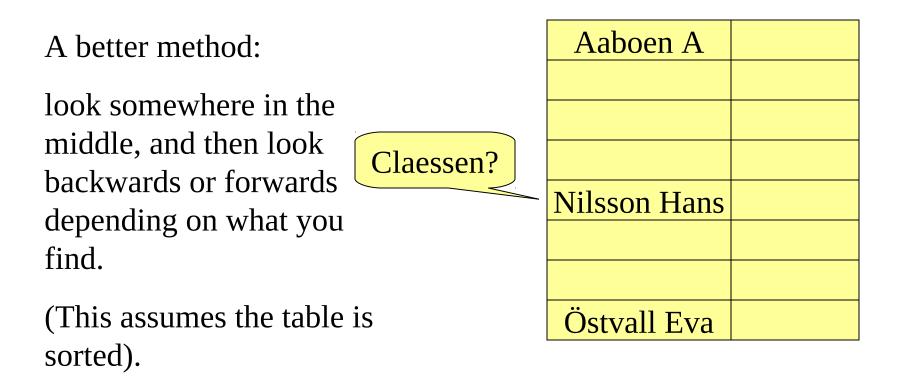
Table Lookup Using Lists

Since a table may contain any kind of keys and values, define a parameterised type:



Finding Keys Fast

Finding keys by searching from the beginning is slow!



Representing Tables

We must be able to break up a table fast, into:

- •A smaller table of entries before the middle one,
- •the middle entry,
- •a table of entries after it.

data Table a b =

Join (Table a b) a b (Table a b)

Aaboen A	

Nilsson Hans	
--------------	--

•• ••	
Östvall Eva	

Quiz

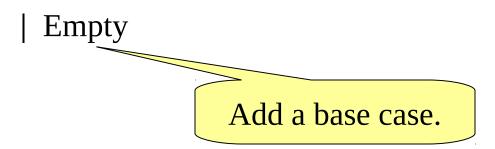
What's wrong with this (recursive) type?

data Table a b = Join (Table a b) a b (Table a b)

Quiz

What's wrong with this (recursive) type? No base case!

data Table a b = Join (Table a b) a b (Table a b)



Looking Up a Key

- To look up a key in a table:
- •If the table is empty, then the key is not found.
- •Compare the key with the key of the middle element.
- •If they are equal, return the associated value.
- •If the key is less than the key in the middle, look in the first half of the table.
- •If the key is greater than the key in the middle, look in the second half of the table.

Quiz

Define

lookupT :: Ord a => a -> Table a b -> Maybe b

Recall

Quiz

Define

lookupT :: Ord a => a -> Table a b -> Maybe b

lookupT key Empty = Nothing
lookupT key (Join left k v right)

$$| key == k = Just v$$

- | key < k = lookupT key left
- | key > k = lookupT key right

Recursive type means a recursive function!

Inserting a New Key

We also need function to build tables. We define

insertT :: Ord a => a -> b -> Table a b -> Table a b

to insert a new key and value into a table.

We must be careful to insert the new entry in the right place, so that the keys remain in order.

Idea: Compare the new key against the middle one. Insert into the first or second half as appropriate.

Defining Insert

insertT key val Empty = Join Empty key val Empty
insertT key val (Join left k v right)

- | key <= k = Join (insertT key val left) k v right
- | key > k = Join left k v (insertT key val right)

Many forget to join up the new right half with the old left half again.

Efficiency

On average, how many comparisons does it take to find a key in a table of 1000 entries, using a list and using the new method?

Using a list: 500

Using the new method: 10

Testing

- How should we test the Table operations?
 - By comparison with the list operations

->
prop_LookupT k t =
 [(a,b)]
lookupT k t == lookup k (contents t)
prop_InsertT k v t =
 insert (k,v) (contents t) == contents (insertT k v t)

Table a b

Generating Random Tables

 Recursive types need recursive generators instance (Arbitrary a, Arbitrary b) =>

Arbitrary (Table a b) where

We can generate arbitrary Tables...

...provided we can generate keys and values

Generating Random Tables

• Recursive types need recursive generators **instance** (Arbitrary a, Arbitrary b) => Arbitrary (Table a b) where arbitrary = oneof [return Empty, **do** k <- arbitrary v <- arbitrary left <- arbitrary Quiz: right <- arbitrary What is wrong with return (Join left k v right)] this generator?

Controlling the Size of Tables

• Generate tables with *at most n elements*

Testing Table Properties

prop_LookupT k t = lookupT k t == lookup k (contents t)

Main> quickCheck prop_LookupT Falsifiable, after 10 tests:

Join Empty 2 (-2) (Join Empty 0 0 Empty)

Main> contents (Join Empty 2 (-2) ...)

[(2,-2),(0,0)]

What's wrong?

Tables must be Ordered!

prop_InvTable :: Table Integer Integer -> Bool
prop_InvTable t = ordered ks
where ks = [k | (k,v) <- contents t]</pre>

• Tables should satisfy an important *invariant*.

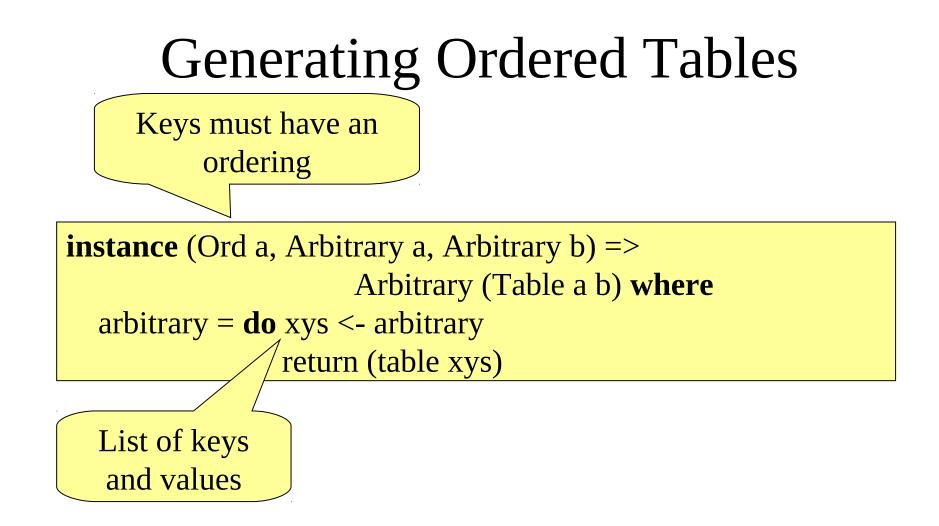
Main> quickCheck prop_InvTable Falsifiable, after 4 tests: Join Empty 3 3 (Join Empty 0 3 Empty)

How to Generate Ordered Tables?

- Generate a random list,
 - Take the *first* (key,value) to be at the root
 - Take all the *smaller* keys to go in the left subtree
 - Take all the *larger* keys to go in the right subtree

Converting a List to a Table

-- table kvs converts a list of key-value pairs into a Table -- satisfying the ordering invariant table :: Ord key => [(key,val)] -> Table key val table [] = Empty table ((k,v):kvs) = Join (table [(k',v') | (k',v') <- kvs, k' <= k]) k v (table [(k',v') | (k',v') <- kvs, k' > k])



Testing the Properties

• Now the invariant holds, but the properties don't!

```
Main> quickCheck prop_InvTable
OK, passed 100 tests.
Main> quickCheck prop_LookupT
Falsifiable, after 7 tests:
-1
Join (Join Empty (-1) (-2) Empty) (-1) (-1) Empty
```

More Testing

prop_InsertT k v t = insert (k,v) (contents t) == contents (insertT k v t)

Main> quickCheck prop_InsertT Falsifiable, after 8 tests: 0 0 Join Empty 0 (-1) Empty

The Bug

insert key val Empty = Join Empty key val Empty
insert key val (Join left k v right) =

| key <= k = Join (insert key val left) k v right

| key > k = Join left k v (insert key val right)

Inserts duplicate keys!

The Fix

insertT key val Empty = Join Empty key val Empty
insertT key val (Join left k v right) =

| key < k = Join (insertT key val left) k v right

| key==k = Join left k val right

| key > k = Join left k v (insertT key val right)

prop_InvTable :: Table Integer Integer -> Bool
prop_InvTable t = ordered ks && ks == nub ks
where ks = [k | (k,v) <- contents t]</pre>

(and fix the table generator)

Testing Again

```
Main> quickCheck prop_InsertT
Falsifiable, after 6 tests:
-2
2
Join Empty (-2) 1 Empty
```

Testing Again

```
Main> quickCheck prop_InsertT
Falsifiable, after 6 tests:
-2
2
Join Empty (-2) 1 Empty
```

Main> insertT (-2) 2 (Join Empty (-2) 1 Empty) Join Empty (-2) 2 Empty

Testing Again

```
Main> quickCheck prop_insertT
Falsifiable, after 6 tests:
-2
2
Join Empty (-2) 1 Empty
```

Main> insertT (-2) 2 (Join Empty (-2) 1 Empty) Join Empty (-2) 2 Empty

Main> insert (-2,2) [(-2,1)] [(-2,1),(-2,2)]

insert doesn't *remove* the old key-value pair when keys clash—the wrong model!

Summary

- Recursive data-types can store data in different ways
- Clever choices of datatypes and algorithms can improve performance dramatically
- Careful thought about *invariants* is needed to get such algorithms right!
- Formulating properties and invariants, and testing them, reveals bugs early