

Datastructures

Koen Lindström Claessen

Data Structures

• Datatype
– A model of something that we want to represent in our

program

• Data structure
– A particular way of storing data
– How? Depending on what we want to do with the data

• Today: Two examples
– Queues
– Tables

Using QuickCheck to Develop
Fast Queue Operations

What we’re going to do:

•Explain what a queue is, and give slow implementations of
the queue operations, to act as a specification.

•Explain the idea behind the fast implementation.

•Formulate properties that say the fast implementation is
”correct”.

•Test them with QuickCheck.

What is a Queue?

Leave from
the frontJoin at the back

Examples

• Files to print

• Processes to run

• Tasks to perform

What is a Queue?

A queue contains a sequence of values. We can add elements at the
back, and remove elements from the front.

We’ll implement the following operations:

 empty :: Q a
 add :: a -> Q a -> Q a
 remove :: Q a -> Q a
 front :: Q a -> a
 isEmpty :: Q a -> Bool

-- an empty queue
-- add an element at the back
-- remove an element from the front
-- inspect the front element
-- check if the queue is empty

First Try

data Q a = Q [a] deriving (Eq, Show)

empty = Q []

add x (Q xs) = Q (xs++[x])

remove (Q (x:xs)) = Q xs

front (Q (x:xs)) = x

isEmpty (Q xs) = null xs

new
type

Works, but slow

add x (Q xs) = Q (xs++[x])

[] ++ ys = ys

(x:xs) ++ ys = x : (xs++ys)

Add 1, add 2, add 3, add 4, add 5…

Time is the square of the number of additions

As many recursive
calls as there are
elements in xs

A Module

• Implement the result in a module

• Use as specification

• Allows the re-use
– By other programmers
– Of the same names

SlowQueue Module

module SlowQueue where

data Q a = Q [a] deriving (Eq, Show)

empty = Q []
add x (Q xs) = Q (xs++[x])
remove (Q (x:xs)) = Q xs
front (Q (x:xs)) = x
isEmpty (Q xs) = null xs

New Idea: Store the Front and
Back Separately

b c d e f g h ia jOld

Fast to
remove

Slow to add

b c d e

i h g f

a

j

New

Fast to add

Fast to
remove Periodically

move the
back to the

front.

Fast Datatype

data Q a = Q [a] [a]

 deriving (Eq, Show)

The front and the back
part of the queue.

Fast Operations

empty = Q [] []

add x (Q front back) = Q front (x:back)

remove (Q (x:front) back) = fixQ front back

front (Q (x:front) back) = x

isEmpty (Q front back) = null front && null back

Flip the queue when
we serve the last

person in the front

Smart Constructor

fixQ [] back = Q (reverse back) []

fixQ front back = Q front back

This takes one function call per element in the
back—each element is inserted into the
back (one call), flipped (one call), and
removed from the front (one call)

How can we test the fast functions?

• By using the original implementation as a
reference

• The behaviour should be ”the same”
– Check results

• First version is an abstract model that is
”obviously correct”

Comparing the Implementations

• They operate on different types of queues

• To compare, must convert between them

– Can we convert a slow Q to a Q?

• Where should we split the front from the back???

– Can we convert a Q to a slow Q?

• Retrieve the simple ”model” contents from the
implementation

contents (Q front back) = Q (front++reverse back)

Accessing modules

import qualified SlowQueue as Slow

contents :: Q Int -> Slow.Q Int

contents (Q front back) =

 Slow.Q (front ++ reverse back)

Qualified name

The Properties

prop_Empty =
 contents empty == Slow.empty
prop_Add x q =
 contents (add x q) == Slow.add x (contents q)
prop_Remove q =
 contents (remove q) == Slow.remove (contents q)
prop_Front q =
 front q == Slow.front (contents q)
prop_IsEmpty q =
 isEmpty q == Slow.isEmpty (contents q)

The behaviour is
the same, except

for type
conversion

Generating Qs

instance Arbitrary a => Arbitrary (Q a) where

 arbitrary = do front <- arbitrary

 back <- arbitrary

 return (Q front back)

A Bug!

Queues> quickCheck prop_Remove
*** Failed! Exception: 'Queue.hs:22:0-42: Non-exhaustive patterns in

function remove' (after 1 test):
Q [] []

Preconditions
• A condition that must hold before a function

is called
prop_remove q =

 not (isEmpty q) ==>

 retrieve (remove q) == remove (retrieve q)

prop_front q =

 not (isEmpty q) ==>

 front q == front (retrieve q)

• Useful to be precise about these

Queues> quickCheck prop_Remove

*** Failed! Exception: 'Queue.hs:22:0-42:
Non-exhaustive patterns in function
remove' (after 2 tests):

Q [] [-1,0]

Another Bug!

But this ought not to happen!

An Invariant

• Q values ought never to have an empty
front, and a non-empty back!

• Formulate an invariant
invariant (Q front back) =

 not (null front && not (null back))

Testing the Invariant

prop_Invariant :: Q Int -> Bool

prop_Invariant q = invariant q

• Of course, it fails…
Queues> quickCheck prop_invariant

Falsifiable, after 4 tests:

Q [] [-1]

Fixing the Generator

instance Arbitrary a => Arbitrary (Q a) where

 arbitrary = do front <- arbitrary

 back <- arbitrary

 return (Q front

 (if null front then [] else back))

• Now prop_Invariant passes the tests

Testing the Invariant

• We’ve written down the invariant

• We’ve seen to it that we only generate valid
Qs as test data

• We must ensure that the queue functions
only build valid Q values!
– It is at this stage that the invariant is most

useful

Invariant Properties

prop_Empty_Inv =

 invariant empty

prop_Add_Inv x q =

 invariant (add x q)

prop_Remove_Inv q =

 not (isEmpty q) ==>

 invariant (remove q)

A Bug in the Q operations!

Queues> quickCheck prop_Add_Inv

Falsifiable, after 2 tests:

0

Q [] []

Queues> add 0 (Q [] [])

Q [] [0] The invariant is False!

Fixing add

add x (Q front back) = fixQ front (x:back)

• We must flip the queue when the first element
is inserted into an empty queue

• Previous bugs were in our understanding (our
properties)—this one is in our implementation
code

Summary

• Data structures store data

• Obeying an invariant

• ... that functions and operations
– can make use of (to search faster)

– have to respect (to not break the invariant)

• Writing down and testing invariants and
properties is a good way of finding errors

Another Datastructure: Tables

A table holds a collection of keys
and associated values.

For example, a phone book is a
table whose keys are names, and
whose values are telephone
numbers.

Problem: Given a table and a key,
find the associated value.

John Hughes

Hans Svensson

Koen Claessen

Mary Sheeran

1001

1079

1013

5424

Table Lookup Using Lists

Since a table may contain any kind of keys and values, define a
parameterised type:

type Table a b = [(a, b)]

lookup :: Eq a => a -> Table a b -> Maybe b

E.g. [(”x”,1), (”y”,2)] ::
Table String Int

lookup ”y” …
 Just 2

lookup ”z” ...
Nothing

Finding Keys Fast

Finding keys by searching from the beginning is slow!

A better method:

look somewhere in the
middle, and then look
backwards or forwards
depending on what you
find.

(This assumes the table is
sorted).

Aaboen A

Nilsson Hans

Östvall Eva

Claessen?

Representing Tables

Aaboen A

Nilsson Hans

Östvall Eva

We must be able to break up a
table fast, into:

•A smaller table of entries
before the middle one,

•the middle entry,

•a table of entries after it.

data Table a b =

 Join (Table a b) a b (Table a b)

Quiz

What’s wrong with this (recursive) type?

data Table a b = Join (Table a b) a b (Table a b)

Quiz

What’s wrong with this (recursive) type? No base case!

data Table a b = Join (Table a b) a b (Table a b)

 | Empty

Add a base case.

Looking Up a Key

To look up a key in a table:

•If the table is empty, then the key is not found.

•Compare the key with the key of the middle element.

•If they are equal, return the associated value.

•If the key is less than the key in the middle, look in the first
half of the table.

•If the key is greater than the key in the middle, look in the
second half of the table.

Quiz

Define

lookupT :: Ord a => a -> Table a b -> Maybe b

Recall

data Table a b = Join (Table a b) a b (Table a b)

 | Empty

Quiz

Define

lookupT :: Ord a => a -> Table a b -> Maybe b

lookupT key Empty = Nothing

lookupT key (Join left k v right)

| key == k = Just v

| key < k = lookupT key left

| key > k = lookupT key right

Recursive type means
a recursive function!

Inserting a New Key

We also need function to build tables. We define

insertT :: Ord a => a -> b -> Table a b -> Table a b

to insert a new key and value into a table.

We must be careful to insert the new entry in the right place,
so that the keys remain in order.

Idea: Compare the new key against the middle one. Insert into
the first or second half as appropriate.

Defining Insert

insertT key val Empty = Join Empty key val Empty

insertT key val (Join left k v right)

| key <= k = Join (insertT key val left) k v right

| key > k = Join left k v (insertT key val right)

Many forget to join up the
new right half with the old

left half again.

Efficiency

On average, how many comparisons does it take to find a key
in a table of 1000 entries, using a list and using the new
method?

Using a list: 500

Using the new method: 10

Testing

• How should we test the Table operations?
– By comparison with the list operations

prop_LookupT k t =
 lookupT k t == lookup k (contents t)
prop_InsertT k v t =
 insert (k,v) (contents t) == contents (insertT k v t)

Table a b
->

[(a,b)]

Generating Random Tables

• Recursive types need recursive generators
instance (Arbitrary a, Arbitrary b) =>

Arbitrary (Table a b) where

We can generate arbitrary
Tables...

...provided we can generate
keys and values

Generating Random Tables

• Recursive types need recursive generators
instance (Arbitrary a, Arbitrary b) =>

Arbitrary (Table a b) where

arbitrary = oneof [return Empty,

 do k <- arbitrary

 v <- arbitrary

 left <- arbitrary

 right <- arbitrary

 return (Join left k v right)]

Quiz:
What is wrong with

this generator?

Controlling the Size of Tables

• Generate tables with at most n elements

table s = frequency [(1, return Empty),
 (s, do k <- arbitrary

 v <- arbitrary
 l <- table (s `div` 2)

 r <- table (s `div` 2)
 return (Join l k v r))]

instance (Arbitrary a, Arbitrary b) =>
Arbitrary (Table a b) where

 arbitrary = sized table

Testing Table Properties

Main> quickCheck prop_LookupT

Falsifiable, after 10 tests:

0

Join Empty 2 (-2) (Join Empty 0 0 Empty)

Main> contents (Join Empty 2 (-2) …)

[(2,-2),(0,0)]

prop_LookupT k t = lookupT k t == lookup k (contents t)

What’s wrong?

Tables must be Ordered!

• Tables should satisfy an important
invariant.

prop_InvTable :: Table Integer Integer -> Bool
prop_InvTable t = ordered ks
 where ks = [k | (k,v) <- contents t]

Main> quickCheck prop_InvTable
Falsifiable, after 4 tests:
Join Empty 3 3 (Join Empty 0 3 Empty)

How to Generate Ordered Tables?

• Generate a random list,
– Take the first (key,value) to be at the root

– Take all the smaller keys to go in the left
subtree

– Take all the larger keys to go in the right
subtree

Converting a List to a Table

-- table kvs converts a list of key-value pairs into a Table
-- satisfying the ordering invariant
table :: Ord key => [(key,val)] -> Table key val
table [] = Empty
table ((k,v):kvs) = Join (table [(k',v') | (k',v') <- kvs, k' <= k])
 k v
 (table [(k',v') | (k',v') <- kvs, k' > k])

Generating Ordered Tables

instance (Ord a, Arbitrary a, Arbitrary b) =>
Arbitrary (Table a b) where

 arbitrary = do xys <- arbitrary
 return (table xys)

Keys must have an
ordering

List of keys
and values

Testing the Properties

• Now the invariant holds, but the properties
don’t!

Main> quickCheck prop_InvTable
OK, passed 100 tests.
Main> quickCheck prop_LookupT
Falsifiable, after 7 tests:
-1
Join (Join Empty (-1) (-2) Empty) (-1) (-1) Empty

More Testing

Main> quickCheck prop_InsertT
Falsifiable, after 8 tests:
0
0
Join Empty 0 (-1) Empty

What’s
wrong?

prop_InsertT k v t =
 insert (k,v) (contents t)
 == contents (insertT k v t)

The Bug

insert key val Empty = Join Empty key val Empty

insert key val (Join left k v right) =

| key <= k = Join (insert key val left) k v right

| key > k = Join left k v (insert key val right)

Inserts duplicate keys!

The Fix

insertT key val Empty = Join Empty key val Empty

insertT key val (Join left k v right) =

| key < k = Join (insertT key val left) k v right

 | key==k = Join left k val right

| key > k = Join left k v (insertT key val right)

prop_InvTable :: Table Integer Integer -> Bool
prop_InvTable t = ordered ks && ks == nub ks
 where ks = [k | (k,v) <- contents t]

(and fix the table generator)

Testing Again

Main> quickCheck prop_InsertT
Falsifiable, after 6 tests:
-2
2
Join Empty (-2) 1 Empty

Testing Again

Main> quickCheck prop_InsertT
Falsifiable, after 6 tests:
-2
2
Join Empty (-2) 1 Empty

Main> insertT (-2) 2 (Join Empty (-2) 1 Empty)
Join Empty (-2) 2 Empty

Testing Again

Main> quickCheck prop_insertT
Falsifiable, after 6 tests:
-2
2
Join Empty (-2) 1 Empty

Main> insertT (-2) 2 (Join Empty (-2) 1 Empty)
Join Empty (-2) 2 Empty

Main> insert (-2,2) [(-2,1)]
[(-2,1),(-2,2)]

insert doesn’t remove the old
key-value pair when keys
clash—the wrong model!

Summary

• Recursive data-types can store data in different
ways

• Clever choices of datatypes and algorithms
can improve performance dramatically

• Careful thought about invariants is needed to
get such algorithms right!

• Formulating properties and invariants, and
testing them, reveals bugs early

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

