
  

Datastructures

Koen Lindström Claessen



  

Data Structures

• Datatype
– A model of something that we want to represent in our 

program

• Data structure
– A particular way of storing data
– How? Depending on what we want to do with the data

• Today: Two examples
– Queues
– Tables



  

Using QuickCheck to Develop 
Fast Queue Operations

What we’re going to do:

•Explain what a queue is, and give slow implementations of 
the queue operations, to act as a specification.

•Explain the idea behind the fast implementation.

•Formulate properties that say the fast implementation is 
”correct”.

•Test them with QuickCheck.



  

What is a Queue?

Leave from
the frontJoin at the back

Examples

• Files to print

• Processes to run

• Tasks to perform



  

What is a Queue?

A queue contains a sequence of values. We can add elements at the 
back, and remove elements from the front.

We’ll implement the following operations:

  empty    :: Q a
  add        :: a -> Q a -> Q a
  remove  :: Q a -> Q a
  front       :: Q a -> a
  isEmpty :: Q a -> Bool
  

-- an empty queue
-- add an element at the back
-- remove an element from the front
-- inspect the front element
-- check if the queue is empty



  

First Try

data Q a = Q [a] deriving (Eq, Show)

empty                    = Q []

add x (Q xs)          = Q (xs++[x])

remove (Q (x:xs)) = Q xs

front (Q (x:xs))     = x

isEmpty (Q xs)     = null xs

new 
type



  

Works, but slow

add x (Q xs) = Q (xs++[x])

[]        ++ ys = ys

(x:xs) ++ ys = x : (xs++ys)

Add 1, add 2, add 3, add 4, add 5…

Time is the square of the number of additions

As many recursive 
calls as there are 
elements in xs



  

A Module

• Implement the result in a module

• Use as specification

• Allows the re-use
– By other programmers
– Of the same names



  

SlowQueue Module

module SlowQueue where

data Q a = Q [a] deriving (Eq, Show)

empty                    = Q []
add x (Q xs)          = Q (xs++[x])
remove (Q (x:xs)) = Q xs
front (Q (x:xs))     = x
isEmpty (Q xs)     = null xs



  

New Idea: Store the Front and 
Back Separately

b c d e f g h ia jOld

Fast to
remove

Slow to add

b c d e

i h g f

a

j

New

Fast to add

Fast to 
remove Periodically

move the
back to the

front.



  

Fast Datatype

data Q a = Q [a] [a]

  deriving (Eq, Show)

The front and the back 
part of the queue.



  

Fast Operations

empty                                 = Q [] []

add x (Q front back)          = Q front (x:back)

remove (Q (x:front) back) = fixQ front back

front (Q (x:front) back)     = x

isEmpty (Q front back)     = null front && null back

Flip the queue when 
we serve the last 

person in the front



  

Smart Constructor

fixQ []      back = Q (reverse back) []

fixQ front back = Q front back

This takes one function call per element in the 
back—each element is inserted into the 
back (one call), flipped (one call), and 
removed from the front (one call)



  

How can we test the fast functions?

• By using the original implementation as a 
reference

• The behaviour should be ”the same”
– Check results

• First version is an abstract model that is 
”obviously correct”



  

Comparing the Implementations

• They operate on different types of queues

• To compare, must convert between them

– Can we convert a slow Q to a Q?

• Where should we split the front from the back???

– Can we convert a Q to a slow Q?

• Retrieve the simple ”model” contents from the 
implementation

contents (Q front back) = Q (front++reverse back)



  

Accessing modules

import qualified SlowQueue as Slow

contents :: Q Int -> Slow.Q Int

contents (Q front back) =

                        Slow.Q (front ++ reverse back)

Qualified name



  

The Properties

prop_Empty =
     contents empty == Slow.empty
prop_Add x q =
     contents (add x q) == Slow.add x (contents q)
prop_Remove q =
     contents (remove q) == Slow.remove (contents q)
prop_Front q = 
     front q == Slow.front (contents q)
prop_IsEmpty q =
     isEmpty q == Slow.isEmpty (contents q)

The behaviour is 
the same, except 

for type 
conversion



  

Generating Qs

instance Arbitrary a => Arbitrary (Q a) where

  arbitrary = do front <- arbitrary

                         back <- arbitrary

                         return (Q front back)



  

A Bug!

Queues> quickCheck prop_Remove
*** Failed! Exception: 'Queue.hs:22:0-42: Non-exhaustive patterns in 

function remove' (after 1 test):  
Q [] []



  

Preconditions
• A condition that must hold before a function 

is called
prop_remove q =

   not (isEmpty q) ==> 

      retrieve (remove q) == remove (retrieve q)

prop_front q =

   not (isEmpty q) ==> 

      front q == front (retrieve q)

• Useful to be precise about these



  

Queues> quickCheck prop_Remove

*** Failed! Exception: 'Queue.hs:22:0-42: 
Non-exhaustive patterns in function 
remove' (after 2 tests):  

Q [] [-1,0]

Another Bug!

But this ought not to happen!



  

An Invariant

• Q values ought never to have an empty 
front, and a non-empty back!

• Formulate an invariant
invariant (Q front back) =

    not (null front && not (null back))



  

Testing the Invariant

prop_Invariant :: Q Int -> Bool

prop_Invariant q = invariant q

• Of course, it fails…
Queues> quickCheck prop_invariant

Falsifiable, after 4 tests:

Q [] [-1]



  

Fixing the Generator

instance Arbitrary a => Arbitrary (Q a) where

  arbitrary = do front <- arbitrary

                         back <- arbitrary

                         return (Q front

                              (if null front then [] else back))

• Now prop_Invariant passes the tests



  

Testing the Invariant

• We’ve written down the invariant

• We’ve seen to it that we only generate valid 
Qs as test data

• We must ensure that the queue functions 
only build valid Q values!
– It is at this stage that the invariant is most 

useful



  

Invariant Properties

prop_Empty_Inv =

    invariant empty

prop_Add_Inv x q =

    invariant (add x q)

prop_Remove_Inv q =

    not (isEmpty q) ==> 

    invariant (remove q)



  

A Bug in the Q operations!

Queues> quickCheck prop_Add_Inv

Falsifiable, after 2 tests:

0

Q [] []

Queues> add 0 (Q [] [])

Q [] [0] The invariant is False!



  

Fixing add

add x (Q front back) = fixQ front (x:back)

• We must flip the queue when the first element 
is inserted into an empty queue

• Previous bugs were in our understanding (our 
properties)—this one is in our implementation 
code



  

Summary

• Data structures store data

• Obeying an invariant

• ... that functions and operations
– can make use of (to search faster)

– have to respect (to not break the invariant)

• Writing down and testing invariants and 
properties is a good way of finding errors



  

Another Datastructure: Tables

A table holds a collection of keys 
and associated values. 

For example, a phone book is a 
table whose keys are names, and 
whose values are telephone 
numbers.

Problem: Given a table and a key, 
find the associated value.

John Hughes

Hans Svensson

Koen Claessen

Mary Sheeran

1001

1079

1013

5424



  

Table Lookup Using Lists

Since a table may contain any kind of keys and values, define a 
parameterised type:

type Table a b = [(a, b)]

lookup :: Eq a => a -> Table a b -> Maybe b

E.g. [(”x”,1), (”y”,2)] :: 
Table String Int

lookup ”y” …
      Just 2

lookup ”z” ... 
Nothing



  

Finding Keys Fast

Finding keys by searching from the beginning is slow!

A better method:

look somewhere in the 
middle, and then look 
backwards or forwards 
depending on what you 
find.

(This assumes the table is 
sorted).

Aaboen A

Nilsson Hans

Östvall Eva

Claessen?



  

Representing Tables

Aaboen A

Nilsson Hans

Östvall Eva

We must be able to break up a 
table fast, into:

•A smaller table of entries 
before the middle one,

•the middle entry,

•a table of entries after it.

data Table a b =

       Join (Table a b) a b (Table a b)



  

Quiz

What’s wrong with this (recursive) type?

data Table a b = Join (Table a b) a b (Table a b)



  

Quiz

What’s wrong with this (recursive) type? No base case!

data Table a b = Join (Table a b) a b (Table a b)

 |  Empty

Add a base case.



  

Looking Up a Key

To look up a key in a table:

•If the table is empty, then the key is not found.

•Compare the key with the key of the middle element.

•If they are equal, return the associated value.

•If the key is less than the key in the middle, look in the first 
half of the table.

•If the key is greater than the key in the middle, look in the 
second half of the table.



  

Quiz

Define

lookupT :: Ord a => a -> Table a b -> Maybe b

Recall

data Table a b = Join (Table a b) a b (Table a b)

 |  Empty



  

Quiz

Define

lookupT :: Ord a => a -> Table a b -> Maybe b

lookupT key Empty = Nothing

lookupT key (Join left k v right)

| key == k = Just v

| key < k = lookupT key left

| key > k = lookupT key right

Recursive type means
a recursive function!



  

Inserting a New Key

We also need function to build tables. We define

insertT :: Ord a => a -> b -> Table a b -> Table a b

to insert a new key and value into a table.

We must be careful to insert the new entry in the right place, 
so that the keys remain in order.

Idea: Compare the new key against the middle one. Insert into 
the first or second half as appropriate.



  

Defining Insert

insertT key val Empty = Join Empty key val Empty

insertT key val (Join left k v right) 

| key <= k = Join (insertT key val left) k v right

| key > k = Join left k v (insertT key val right)

Many forget to join up the
new right half with the old

left half again.



  

Efficiency

On average, how many comparisons does it take to find a key 
in a table of 1000 entries, using a list and using the new 
method?

Using a list: 500

Using the new method: 10



  

Testing

• How should we test the Table operations?
– By comparison with the list operations

prop_LookupT k t = 
    lookupT k t == lookup k (contents t)
prop_InsertT k v t = 
    insert (k,v) (contents t) == contents (insertT k v t)

Table a b
->

[(a,b)]



  

Generating Random Tables

• Recursive types need recursive generators
instance (Arbitrary a, Arbitrary b) => 

Arbitrary (Table a b) where

We can generate arbitrary 
Tables...

...provided we can generate 
keys and values



  

Generating Random Tables

• Recursive types need recursive generators
instance (Arbitrary a, Arbitrary b) => 

Arbitrary (Table a b) where

arbitrary = oneof [ return Empty,

                        do k <- arbitrary

                                  v <- arbitrary

                                  left <- arbitrary

                          right <- arbitrary

                                  return (Join left k v right) ]

Quiz:
What is wrong with 

this generator?



  

Controlling the Size of Tables

• Generate tables with at most n elements

table s = frequency [(1, return Empty),
         (s, do k <- arbitrary

       v <- arbitrary
       l <- table (s `div` 2)

                                           r <- table (s `div` 2)
                   return (Join l k v r))]

instance (Arbitrary a, Arbitrary b) => 
Arbitrary (Table a b) where

    arbitrary = sized table



  

Testing Table Properties

Main> quickCheck prop_LookupT

Falsifiable, after 10 tests:

0

Join Empty 2 (-2) (Join Empty 0 0 Empty)

Main> contents (Join Empty 2 (-2)  …)

[(2,-2),(0,0)]

prop_LookupT k t =  lookupT k t == lookup k (contents t)

What’s wrong?



  

Tables must be Ordered!

• Tables should satisfy an important 
invariant.

prop_InvTable :: Table Integer Integer -> Bool
prop_InvTable t = ordered ks
    where ks = [k | (k,v) <- contents t]

Main> quickCheck prop_InvTable
Falsifiable, after 4 tests:
Join Empty 3 3 (Join Empty 0 3 Empty) 



  

How to Generate Ordered Tables?

• Generate a random list,
– Take the first (key,value) to be at the root

– Take all the smaller keys to go in the left 
subtree

– Take all the larger keys to go in the right 
subtree



  

Converting a List to a Table

-- table kvs converts a list of key-value pairs into a Table
-- satisfying the ordering invariant
table :: Ord key => [(key,val)] -> Table key val
table []               = Empty
table ((k,v):kvs) = Join (table [(k',v') | (k',v') <- kvs, k' <= k])
                                      k v
                                      (table [(k',v') | (k',v') <- kvs, k' > k])



  

Generating Ordered Tables

instance (Ord a, Arbitrary a, Arbitrary b) => 
Arbitrary (Table a b) where

    arbitrary = do xys <- arbitrary
   return (table xys)

Keys must have an 
ordering

List of keys 
and values



  

Testing the Properties

• Now the invariant holds, but the properties 
don’t!

Main> quickCheck prop_InvTable
OK, passed 100 tests.
Main> quickCheck prop_LookupT
Falsifiable, after 7 tests:
-1
Join (Join Empty (-1) (-2) Empty) (-1) (-1) Empty 



  

More Testing

Main> quickCheck prop_InsertT
Falsifiable, after 8 tests:
0
0
Join Empty 0 (-1) Empty

What’s 
wrong?

prop_InsertT k v t = 
    insert (k,v) (contents t)
    == contents (insertT k v t)



  

The Bug

insert key val Empty = Join Empty key val Empty

insert key val (Join left k v right) =

| key <= k = Join (insert key val left) k v right

| key > k = Join left k v (insert key val right)

Inserts duplicate keys!



  

The Fix

insertT key val Empty = Join Empty key val Empty

insertT key val (Join left k v right) =

| key < k = Join (insertT key val left) k v right

    | key==k   = Join left k val right

| key > k = Join left k v (insertT key val right)

prop_InvTable :: Table Integer Integer -> Bool
prop_InvTable t = ordered ks && ks == nub ks
    where ks = [k | (k,v) <- contents t]

(and fix the table generator)



  

Testing Again

Main> quickCheck prop_InsertT
Falsifiable, after 6 tests:
-2
2
Join Empty (-2) 1 Empty

 



  

Testing Again

Main> quickCheck prop_InsertT
Falsifiable, after 6 tests:
-2
2
Join Empty (-2) 1 Empty 

Main> insertT (-2) 2 (Join Empty (-2) 1 Empty)
Join Empty (-2) 2 Empty 



  

Testing Again

Main> quickCheck prop_insertT
Falsifiable, after 6 tests:
-2
2
Join Empty (-2) 1 Empty 

Main> insertT (-2) 2 (Join Empty (-2) 1 Empty)
Join Empty (-2) 2 Empty 

Main> insert (-2,2) [(-2,1)]
[(-2,1),(-2,2)]

insert doesn’t remove the old 
key-value pair when keys 
clash—the wrong model!



  

Summary

• Recursive data-types can store data in different 
ways

• Clever choices of datatypes and algorithms 
can improve performance dramatically

• Careful thought about invariants is needed to 
get such algorithms right!

• Formulating properties and invariants, and 
testing them, reveals bugs early
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