Gtk2Hs Tutorial

Krasimir Angelov
Chalmers University of Technology

November 24, 2011




@ Introduction to GUI programming

© Introduction to GTK+ and Gtk2Hs

© The First Gtk2Hs Program



@ Introduction to GUI programming




Change of control!

@ The biggest difference between CUI and GUI is the control
mechanism

e in the console - the application is in control of everything
e in the graphical interface - the environment is in control

@ The environment notifies the program for all interesting
events

@ The application responds by executing some actions



The visual elements are objects

@ In the console, everything is text which flows from and to the
application

@ In the graphical interface, every visual element is an object
which is owned by the application

@ The visual elements are nested in each other (i.e. some
elements are containers for other elements)



© Introduction to GTK+ and Gtk2Hs



The GTK+ Project

e GTK (Gimp ToolKit) is an open-source and cross-platform
graphical library:

http://www.gtk.org/
@ The core technology behind GNOME

@ Written in C with architecture that makes it easy to write
bindings for other languages.



GTK+ Bindings

28 210 212 214 216 218 220 222

Language
C++
c#

)

)

5

5

5

)

Java

)

)

5

5

5

)

Python

44

JavaScript ¥ W

Perl

5

5

)

¥

Vala

5

5

)

Lua

Guile

Ruby
PHP
Ada

5

5

)

~

OCaml

Haskell

)

5

O

FreeBASIC O O



Gtk2Hs

@ Gtk2Hs is the Haskell binding to GTK+
http://www.haskell.org/gtk2hs/

@ Rather low-level library. Every function and type is just
exported to Haskell.

@ There are high-level abstractions for some concepts i.e.:
Attributes, Events, etc.

@ We will stick to the low-level API since it has better coverage



Gtk2Hs Installation

@ You need:
o Gtk2Hs 0.12.2
o GTK+ 2.22

@ On Linux GTK is probably already installed; On Windows you
have to install GTK first and Gtk2Hs after that. Read more
here:
http://www.cse.chalmers.se/edu/course/TDA451 _
Functional Programming/labs/4/gtk2hs-install.html

@ Everything is already installed on the Chalmers machines.


http://www.cse.chalmers.se/edu/course/TDA451_Functional_Programming/labs/4/gtk2hs-install.html
http://www.cse.chalmers.se/edu/course/TDA451_Functional_Programming/labs/4/gtk2hs-install.html

Sources of Inspiration

GTK+ is a huge library. If you don’t know how to do something:
@ Look at the demos
(http://code.haskell.org/gtk2hs/gtk /demo/)
@ Search the documentation
(http://hackage.haskell.org/package/gtk-0.12.0).
Note: If you cannot find some function for a given type, then

look at the super class.

© Ask in the course’s Google Group



Web Tutorial

There is a Gtk2HSs tutorial on the course web page

http://wuw.cse.chalmers.se/edu/course/TDA451_
Functional Programming/labs/4/gtk2hs.html


http://www.cse.chalmers.se/edu/course/TDA451_Functional_Programming/labs/4/gtk2hs.html
http://www.cse.chalmers.se/edu/course/TDA451_Functional_Programming/labs/4/gtk2hs.html

© The First Gtk2Hs Program



Scope

A simple graphical interface that:
@ opens a window
@ lets the user to draw lines

@ the width of the lines is configurable



Initialization

@ You need to import the library:
import Graphics.Ul.Gtk

Note: This is the top-level module which imports several
other modules, so you don’t need to list them explicitly

@ Initialize the library:

initGUI :: 10 ()

@ Run the event loop:

mainGUI :: 10 ()



Create a Window

@ Look at Graphics.Ul.Gtk.Windows.Window

windowNew :: 1O Window

@ You also need to show the Window, so since it is a Widget
look at: Graphics.UI.Gtk.Abstract. Widget

widgetShow :: WidgetClass self = self — 10 ()
widgetShowAll :: WidgetClass self = self — 10 ()



Why the program doesn’t terminate?

@ | close the window but the program doesn’t terminate, why?

@ We have to tell GTK when to terminate the event loop:

onDestroy :: WidgetClass w = w — 10 () — 10 (Connectld w)
mainQuit :: 10 ()



Create a DrawingArea

@ Look at Graphics.Ul.Gtk.Misc.DrawingArea

drawingAreaNew :: 10 DrawingArea

@ DrawingArea have to be added as a child of Window, look at
Graphics.Ul.Gtk.Abstract. Widget

containerAdd :: (ContainerClass self, WidgetClass widget) = self — widget — 10 ()



Reaction to Events

@ When the user clicks on the window, then the program have
to react.

@ We need a listener for the 'button press’ event:

onButtonPress :: WidgetClass w = w — (Event — 10 Bool) — |0 (Connectld w)

(in Graphics.Ul.Gtk.Abstract.Widget)



Using State

@ The default way to model state in GTK is by using the |ORef
type from the standard Haskell library. In module Data.IORef:

newlORef :: a — 10 (IORef a)
readlORef :: IORef a — 10 a
writelORef :: IORef a — a — 10 ()



Drawing (1)

e GTK+ has two (and more) layers - GTK and GDK

@ GTK is the higher level where the user interface is composed
of controls

@ GDK is the lower level which is closer to the " device"”

e The drawing operations are on the device level



Drawing (2)

@ Every GTK widget is associated with one GDK window. The
relation is:

widgetGetDrawWindow :: WidgetClass widget = widget — |O DrawWindow

e Every drawing session is within some Graphical Context (GC):

gcNew :: DrawableClass d =~ d — 10 GC



Drawing (3)

@ The graphical context remembers attributes like current color,
font, filling pattern, etc.

gcSetValues :: GC — GCValues — 10 ()
gcGetValues :: GC — 10 GCValues

@ They are used by all drawing primitives

drawLines :: DrawableClass d = d — GC — [Point] — 10 ()



Drawing is yet another event

@ The environment tells the program when it have to redraw the
window.

@ This is yet another event:

onExpose :: WidgetClass w = w — (Event — 10 Bool) — 10 (Connectld w)



The program also could initiate redrawing

@ When the program have changed its state then it have to tell
the environment that it have to refresh its windows.

widgetQueueDraw :: WidgetClass self = self — 10 ()

@ After that the enviroment activates the 'Expose’ event.



Layout widgets

o If you want more than one widget in the window then you
have to arrange them somehow.

e GTK provides Layout Widgets:

vBoxNew :: Bool — Int — 10 VBox
hBoxNew :: Bool — Int — 10 HBox

@ We pack widgets into boxes using:

boxPackStart :: (BoxClass self, WidgetClass child) = self — child — Packing — Int —



Two other widgets

o Entry
entryNew :: |O Entry
o Button

buttonNew :: 10 Button

buttonNewWithLabel :: String — 10 Button

DA



The size request event

@ We have to tell GTK how big drawing area we want

onSizeRequest :: WidgetClass w = w — 10 Requisition — 10 (Connectld w)



Now we can change the width of the line

@ Attach a listener to the button click:

onClicked :: ButtonClass b = b — 10 () — |0 (Connectld b)

@ Get the text from the entry box

entryGetText :: EntryClass self = self — 10 String

@ The text into the entry may not be a number - use message
boxes! (Graphics.Ul.Gtk.Windows.MessageDialog)

@ Set the actual width. Remeber the GCValues structure!



Done

Now we have a complete program!

DA



	Introduction to GUI programming
	Introduction to GTK+ and Gtk2Hs
	The First Gtk2Hs Program

