
Gtk2Hs Tutorial

Krasimir Angelov

Chalmers University of Technology

November 24, 2011



1 Introduction to GUI programming

2 Introduction to GTK+ and Gtk2Hs

3 The First Gtk2Hs Program



1 Introduction to GUI programming

2 Introduction to GTK+ and Gtk2Hs

3 The First Gtk2Hs Program



Change of control!

The biggest difference between CUI and GUI is the control
mechanism

in the console - the application is in control of everything
in the graphical interface - the environment is in control

The environment notifies the program for all interesting
events

The application responds by executing some actions



The visual elements are objects

In the console, everything is text which flows from and to the
application

In the graphical interface, every visual element is an object
which is owned by the application

The visual elements are nested in each other (i.e. some
elements are containers for other elements)



1 Introduction to GUI programming

2 Introduction to GTK+ and Gtk2Hs

3 The First Gtk2Hs Program



The GTK+ Project

GTK (Gimp ToolKit) is an open-source and cross-platform
graphical library:

http://www.gtk.org/

The core technology behind GNOME

Written in C with architecture that makes it easy to write
bindings for other languages.



GTK+ Bindings



Gtk2Hs

Gtk2Hs is the Haskell binding to GTK+

http://www.haskell.org/gtk2hs/

Rather low-level library. Every function and type is just
exported to Haskell.

There are high-level abstractions for some concepts i.e.:
Attributes, Events, etc.

We will stick to the low-level API since it has better coverage



Gtk2Hs Installation

You need:

Gtk2Hs 0.12.2
GTK+ 2.22

On Linux GTK is probably already installed; On Windows you
have to install GTK first and Gtk2Hs after that. Read more
here:
http://www.cse.chalmers.se/edu/course/TDA451_

Functional_Programming/labs/4/gtk2hs-install.html

Everything is already installed on the Chalmers machines.

http://www.cse.chalmers.se/edu/course/TDA451_Functional_Programming/labs/4/gtk2hs-install.html
http://www.cse.chalmers.se/edu/course/TDA451_Functional_Programming/labs/4/gtk2hs-install.html


Sources of Inspiration

GTK+ is a huge library. If you don’t know how to do something:

1 Look at the demos
(http://code.haskell.org/gtk2hs/gtk/demo/)

2 Search the documentation
(http://hackage.haskell.org/package/gtk-0.12.0).

Note: If you cannot find some function for a given type, then
look at the super class.

3 Ask in the course’s Google Group



Web Tutorial

There is a Gtk2Hs tutorial on the course web page

http://www.cse.chalmers.se/edu/course/TDA451_

Functional_Programming/labs/4/gtk2hs.html

http://www.cse.chalmers.se/edu/course/TDA451_Functional_Programming/labs/4/gtk2hs.html
http://www.cse.chalmers.se/edu/course/TDA451_Functional_Programming/labs/4/gtk2hs.html


1 Introduction to GUI programming

2 Introduction to GTK+ and Gtk2Hs

3 The First Gtk2Hs Program



Scope

A simple graphical interface that:

opens a window

lets the user to draw lines

the width of the lines is configurable



Initialization

You need to import the library:

import Graphics.UI.Gtk

Note: This is the top-level module which imports several
other modules, so you don’t need to list them explicitly

Initialize the library:

initGUI :: IO ()

Run the event loop:

mainGUI :: IO ()



Create a Window

Look at Graphics.UI.Gtk.Windows.Window

windowNew :: IO Window

You also need to show the Window, so since it is a Widget
look at: Graphics.UI.Gtk.Abstract.Widget

widgetShow :: WidgetClass self ⇒ self → IO ()
widgetShowAll :: WidgetClass self ⇒ self → IO ()



Why the program doesn’t terminate?

I close the window but the program doesn’t terminate, why?

We have to tell GTK when to terminate the event loop:

onDestroy :: WidgetClass w ⇒ w → IO () → IO (ConnectId w)

mainQuit :: IO ()



Create a DrawingArea

Look at Graphics.UI.Gtk.Misc.DrawingArea

drawingAreaNew :: IO DrawingArea

DrawingArea have to be added as a child of Window, look at
Graphics.UI.Gtk.Abstract.Widget

containerAdd :: (ContainerClass self, WidgetClass widget) ⇒ self → widget → IO ()



Reaction to Events

When the user clicks on the window, then the program have
to react.

We need a listener for the ’button press’ event:

onButtonPress :: WidgetClass w ⇒ w → (Event → IO Bool) → IO (ConnectId w)

(in Graphics.UI.Gtk.Abstract.Widget)



Using State

The default way to model state in GTK is by using the IORef
type from the standard Haskell library. In module Data.IORef :

newIORef :: a → IO (IORef a)

readIORef :: IORef a → IO a

writeIORef :: IORef a → a → IO ()



Drawing (1)

GTK+ has two (and more) layers - GTK and GDK

GTK is the higher level where the user interface is composed
of controls

GDK is the lower level which is closer to the ”device”

The drawing operations are on the device level



Drawing (2)

Every GTK widget is associated with one GDK window. The
relation is:

widgetGetDrawWindow :: WidgetClass widget ⇒ widget → IO DrawWindow

Every drawing session is within some Graphical Context (GC):

gcNew :: DrawableClass d ⇒ d → IO GC



Drawing (3)

The graphical context remembers attributes like current color,
font, filling pattern, etc.

gcSetValues :: GC → GCValues → IO ()

gcGetValues :: GC → IO GCValues

They are used by all drawing primitives

drawLines :: DrawableClass d ⇒ d → GC → [Point] → IO ()



Drawing is yet another event

The environment tells the program when it have to redraw the
window.

This is yet another event:

onExpose :: WidgetClass w ⇒ w → (Event → IO Bool) → IO (ConnectId w)



The program also could initiate redrawing

When the program have changed its state then it have to tell
the environment that it have to refresh its windows.

widgetQueueDraw :: WidgetClass self ⇒ self → IO ()

After that the enviroment activates the ’Expose’ event.



Layout widgets

If you want more than one widget in the window then you
have to arrange them somehow.

GTK provides Layout Widgets:

vBoxNew :: Bool → Int → IO VBox

hBoxNew :: Bool → Int → IO HBox

We pack widgets into boxes using:

boxPackStart :: (BoxClass self, WidgetClass child) ⇒ self → child → Packing → Int → IO ()



Two other widgets

Entry

entryNew :: IO Entry

Button

buttonNew :: IO Button

buttonNewWithLabel :: String → IO Button



The size request event

We have to tell GTK how big drawing area we want

onSizeRequest :: WidgetClass w ⇒ w → IO Requisition → IO (ConnectId w)



Now we can change the width of the line

Attach a listener to the button click:

onClicked :: ButtonClass b ⇒ b → IO () → IO (ConnectId b)

Get the text from the entry box

entryGetText :: EntryClass self ⇒ self → IO String

The text into the entry may not be a number - use message
boxes! (Graphics.UI.Gtk.Windows.MessageDialog)

Set the actual width. Remeber the GCValues structure!



Done

Now we have a complete program!


	Introduction to GUI programming
	Introduction to GTK+ and Gtk2Hs
	The First Gtk2Hs Program

