
Parallel Programming
David Sands

Slides borrowed and adapted from Simon Marlow’s page

http://community.haskell.org/~simonmar/CEFP1.pdf

Parallel and Concurrent Haskell ecosystem

Strategies

Eval
monad

Par
monad lightweight

threads

asynchronous
exceptions

Software
Transactional

Memory

MVars

the IO
manager

Slide: Simon Marlow

Parallel

 Concurrent

Strategies

Eval
monad

Par
monad lightweight

threads

asynchronous
exceptions

Software
Transactional

Memory

MVars

the IO
manager

Parallel

 Concurrent

Par
monad

Today’s Lecture

Strategies

Eval
monad

lightweight
threads

asynchronous
exceptions

Software
Transactional

Memory

MVars

the IO
manager

Parallelism vs. Concurrency

Multiple cores for performance Multiple threads for modularity
of interaction

Concurrent Haskell Parallel Haskell

Slide: S. Marlow

Parallelism vs. Concurrency

•  Primary distinguishing feature of Parallel
Haskell: determinism
– The program does “the same thing”

regardless of how many cores are used to run
it.

– No race conditions or deadlocks
– add parallelism without sacrificing correctness
– Parallelism is used to speed up pure (non-IO

monad) Haskell code

Slide: S. Marlow

Parallelism vs. Concurrency
•  Primary distinguishing feature of Concurrent

Haskell: threads of control
– Concurrent programming is done in the IO monad

•  because threads have effects
•  effects from multiple threads are interleaved

nondeterministically at runtime.
– Concurrent programming allows programs that

interact with multiple external agents to be
modular

•  the interaction with each agent is programmed
separately

•  Allows programs to be structured as a collection of
interacting agents (actors)

Slide: S. Marlow

Parallel Haskell
•  Basic primitives: par and pseq
•  parallelise use of Sudoku solver
•  use ThreadScope to profile parallel execution

•  do dynamic rather than static partitioning
•  measure parallel speedup

–  use Amdahl’s law to calculate possible speedup

– Evaluation Strategies
•  build simple Strategies

Running example: solving
Sudoku

– code from the Haskell wiki (brute force search
with some intelligent pruning)

– can solve all 49,000 problems in 2 mins
–  input: a line of text representing a problem

import Sudoku

solve :: String -> Maybe Grid

.......2143.......6........2.15..........637...........68...4.....23........7....

.......241..8.............3...4..5..7.....1......3.......51.6....2....5..3...7...

.......24....1...........8.3.7...1..1..8..5.....2......2.4...6.5...7.3...........

Slide: S. Marlow

Solving Sudoku problems

•  Sequentially:
– divide the file into lines
– call the solver for each line
import	 Sudoku	
	
f	 =	 "sudoku17.1000.txt”	
	
main	 ::	 IO	 ()	
main	 =	 do	
	 	 	 	 grids	 <-‐	 fmap	 lines	 $	 readFile	 f	
	 	 	 	 let	 solutions	 =	 map	 solve	 grids	
	 	 	 	 print	 $	 all	 isJust	 solutions	

Compile

•  Optimisation –O2
•  Runtime options

$ ghc -O2 sudoku1.hs -rtsopts
[1 of 2] Compiling Sudoku (Sudoku.hs, Sudoku.o)
[2 of 2] Compiling Main (sudoku1.hs, sudoku1.o)
Linking sudoku1 ...
$

Controlling Evaluation for
Parallelism

•  In theory a compiler should be able to
automatically compile pure functional
programs to use multiple cores
– purity) computations can be freely

reordered without changing the result
•  In practice this is hard. We need to give

hints as to which strategy to use
– but no synchronisation/deadlock issues need

to be considered!

Run the program...
$./sudoku1 +RTS -s

 2,392,127,440 bytes allocated in the heap

 36,829,592 bytes copied during GC

 191,168 bytes maximum residency (11 sample(s))

 82,256 bytes maximum slop

 2 MB total memory in use (0 MB lost due to fragmentation)

 Generation 0: 4570 collections, 0 parallel, 0.14s, 0.13s elapsed

 Generation 1: 11 collections, 0 parallel, 0.00s, 0.00s elapsed

...

 INIT time 0.00s (0.00s elapsed)

 MUT time 2.92s (2.92s elapsed)

 GC time 0.14s (0.14s elapsed)

 EXIT time 0.00s (0.00s elapsed)

 Total time 3.06s (3.06s elapsed)

...

par and pseq

ghc	 –threaded	 uses a threaded runtime
system. To make use of it we need to add
some parallelism hints to the code
Control.Parallel	 provides
pseq	 ,	 par	 ::	 a	 -‐>	 b	 -‐>	 b	
• pseq – seq but with a guarantee of left-to-

right evaluation order
• par – maybe evaluate left argument (to

whnf) possibly in parallel with its right arg.

What does par actually do?

•  par creates a spark by writing an entry in the spark
pool
–  par is very cheap! (not a thread)

•  the spark pool is a circular buffer
•  when a processor has nothing to do, it tries to remove

an entry from its own spark pool, or steal an entry from
another spark pool (work stealing)

•  when a spark is found, it is evaluated
•  The spark pool can be full – watch out for spark

overflow!

Spark Pool

x

x `par` y

Parallelising Sudoku

•  Let’s divide the work in two, so we can
solve each half in parallel:

•  Now we need something like

let (as,bs) = splitAt (length grids `div` 2) grids
 as’ = map solve as
 bs’ = map solve bs

let solutions = as’ `par` bs’ `pseq` as’ ++ bs’
print $ all isJust solutions

But this won’t work...

•  Like seq, par evaluates its argument to Weak
Head Normal Form (WHNF)
–  evaluates as far as the first constructor
–  e.g. for a list, we get either [] or (x:xs)
–  e.g. WHNF of map	 solve	 (a:as) would be

solve	 a	 :	 map	 solve	 as	

•  But we want to evaluate the whole list, and the
elements

We need ‘deepseq’

•  deepseq fully evaluates a nested data
structure (its first arg) and returns it’s second
–  e.g. a	 `deepseq`	 b	 	
a	 is fully evaluated, including the elements

•  uses overloading: the argument must be an
instance of NFData
–  instances for most common types are provided by

the library

import	 Control.DeepSeq(deepseq)	
-‐-‐	 deepseq	 ::	 NFData	 a	 =>	 a	 -‐>	 b	 -‐>	 b	

deep

•  We need to use deepseq inside a par
 (as	 `deepseq`	 as)	 `par`	 …	
	

•  But things in a par should be variables,
and should be used later (otherwise the
spark might get discarded!). Thus:
	 let	 as’	 =	 deep	 as	 in	 	

	 	 	 	 	 	 	 	 	 	 	 as’	 `par`	 …	

deep	 a	 =	 a	 `deepseq`	 a	

Using deep
main	 =	 do	
	 	 	 	 grids	 <-‐	 fmap	 lines	 $	 readFile	 f	
	 	 	 	 let	 (as,bs)	 =	 splitAt	 (length	 grids	 `div`	 2)	 grids	
	 	 	 	 	 	 	 	 as'	 =	 deep	 $	 map	 solve	 as	
	 	 	 	 	 	 	 	 bs'	 =	 deep	 $	 map	 solve	 bs	
	 	 	 	 	 	 	 	 result	 =	 all	 isJust	 (as'	 ++	 bs')	 	
	 	 	 	 bs'	 `par`	 as'	 `pseq`	 print	 result	

•  Why bs’ before as’?
– worked out a little better
– need performance measurement…

Let’s try it...

•  Compile sudoku2
–  (add -threaded -rtsopts)
–  run with sudoku17.1000.txt +RTS -N2

•  Take note of the Elapsed Time

Runtime results...
$./sudoku1 +RTS -s -N2

True

 2,400,106,440 bytes allocated in the heap

 48,996,296 bytes copied during GC

 2,615,040 bytes maximum residency (7 sample(s))

 326,584 bytes maximum slop

 9 MB total memory in use (0 MB lost due to fragmentation)

 Generation 0: 2984 collections, 2983 parallel, 0.65s, 0.12s elapsed

 Generation 1: 7 collections, 7 parallel, 0.02s, 0.02s elapsed

 Parallel GC work balance: 1.49 (6106266 / 4103299, ideal 2)

SPARKS: 1 (1 converted, 0 pruned)

 INIT time 0.01s (0.01s elapsed)

 MUT time 2.25s (1.70s elapsed)

 GC time 0.68s (0.14s elapsed)

 EXIT time 0.00s (0.00s elapsed)

 Total time 2.93s (1.85s elapsed)

speedup ~1.5
over the

sequential version

One spark was
created and one was
run by a processor

Why not 2?

•  two reasons for lack of parallel speedup:
–  less than 100% utilisation (some processors

idle for part of the time)
– extra overhead in the parallel version

•  Each of these has many possible causes...

A menu of ways to screw up
•  less than 100% utilisation

–  parallelism was not created, or was discarded
–  algorithm not fully parallelised – residual sequential

computation
–  uneven work loads
–  poor scheduling
–  communication latency

•  extra overhead in the parallel version
–  overheads from rpar, work-stealing, deep, ...
–  lack of locality, cache effects...
–  larger memory requirements leads to GC overhead
–  GC synchronisation
–  duplicating work

So we need tools

•  to tell us why the program isn’t performing
as well as it could be

•  For Parallel Haskell we have ThreadScope

•  -eventlog has very little effect on runtime
–  important for profiling parallelism

$ ghc -O2 sudoku2.hs -threaded -rtsopts –eventlog
$./sudoku2 +RTS -N2 -ls
$ threadscope sudoku2.eventlog

Uneven workloads...
•  So one of the tasks took longer than the

other, leading to less than 100% utilisation

•  One of these lists contains more work than
the other, even though they have the same
length
–  sudoku solving is not a constant-time task: it is a

searching problem, so depends on how quickly
the search finds the solution

 let (as,bs) = splitAt (length grids `div` 2) grids

Partitioning

•  Dividing up the work along fixed pre-
defined boundaries, as we did here, is
called static partitioning
– static partitioning is simple, but can lead to

under-utilisation if the tasks can vary in size
– static partitioning does not adapt to varying

availability of processors – our solution here
can use only 2 processors

 let (as,bs) = splitAt (length grids `div` 2) grids

Dynamic Partitioning

•  GHC’s runtime system provides spark
pools to track dynamic work units, and a
work-stealing scheduler to assign them to
processors

•  So all we need to do is use smaller tasks
and more pars, and we get dynamic
partitioning

Simple idea: parallel map

paraMap::	 (a	 -‐>	 b)	 -‐>	 [a]	 -‐>	 [b]	
paraMap	 f	 []	 =	 []	
paraMap	 f	 (x:xs)	 =	 let	 y	 	 =	 deep	 $	 f	 x	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ys	 =	 paraMap	 f	 xs	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 in	 y	 `par`	 ys	 `pseq`	 y	 :	 ys	 	

places each call to f in a new
spark – to be evaluated deeply!

main	 =	 do	
	 	 	 	 grids	 <-‐	 fmap	 lines	 $	 readFile	 f	
	 	 	 	 let	 solutions	 =	 paraMap	 solve	 grids	 	
	 	 	 	 print	 $	 all	 isJust	 solutions	

Result (2 cores)

Same code on an 8-core box

5.2
speedup

Evaluation Strategies

par and pseq are low level
•  All about sequencing computation and

creation of sparks
– monads are good for sequencing…

•  Algorithm + Strategy = Parallel program
– strategies as re-usable components that can

be composed together
– Clean separation of algorithm from strategy

The Eval monad

•  Eval is pure
•  Just for expressing sequencing between rpar/rseq –

nothing more
•  Compositional – larger Eval sequences can be built by

composing smaller ones using monad combinators
•  Internal workings of Eval are very simple (see Haskell

Symposium 2010 paper)

import Control.Parallel.Strategies

data Eval a
instance Monad Eval

runEval :: Eval a -> a

rpar :: a -> Eval a
rseq :: a -> Eval a

Example: A parallel map
rParaMap :: (a -> b) -> [a] -> Eval [b]
rParaMap f [] = return []
rParaMap f (a:as) = do
 b <- rpar $ deep (f a)
 bs <- rParaMap f as
 return (b:bs)

Create a spark to
evaluate (f a) for
each element a

Return the new list

The Strategy type

•  A Strategy is...
– A function that,
– when applied to a value ‘a’,
–  evaluates ‘a’ to some degree
–  (possibly sparking evaluation of sub-components

of ‘a’ in parallel),
–  and returns an equivalent ‘a’ in the Eval monad

•  NB. the return value should be equivalent to
the original

type Strategy a = a -> Eval a

Some Basic Strategies

•  r0 no evaluation
•  rpar create a parallel spark
•  rdeepseq deep evaluation

evalList
•  parMap has the sparking behaviour built-in, start

with a basic traversal in the Eval monad:

evalList	 (a	 -‐>	 Eval	 a)	 -‐>	 [a]	 -‐>	 Eval	 [a]	
evalList	 f	 []	 	 	 	 	 =	 return	 []	
evalList	 f	 (x:xs)	 =	 do	
	 	 x’	 	 <-‐	 f	 x	
	 	 xs’	 <-‐	 evalList	 f	 xs	
	 	 return	 (x’:xs’)	

evalList

•  and now:

-- Earlier example could be defined as
rParaMap f =
	 	 parList	 (rpar	 `dot`	 rdeepseq)	 .	 map	 f	
	
parList	 f	 =	 evalList	 (rpar	 `dot`	 f)	
	 	 where	 s1	 `dot`	 s2	 =	 s1	 .	 runEval	 .	 s2	

	

How do we use a Strategy?

•  We could just use runEval
•  But this is better:

•  e.g.

•  Idea: `using` strategies should always be a
performance annotation.
– need to check that x `using` s == x

type Strategy a = a -> Eval a

x `using` s = runEval (s x)

myList `using` parList rdeepseq

Using Strategies

•  Note: this modularity depends crucially on lazy
evaluation – otherwise strat would be too late to
have any control (the term would already be
evaluated!)

main	 =	 do	
	 	 	 	 grids	 <-‐	 fmap	 lines	 $	 readFile	 f	
	 	 	 	 let	 solutions	 =	 map	 solve	 grids	 `using`	 strat	 	
	 	 	 	 print	 $	 all	 isJust	 solutions	

strat	 =	 evalList	 (rpar	 `dot`	 rdeepseq)	

What if the file is BIG

•  1000 -> 16000 sudokus
•  Spark pool buffer exceeded – lost sparks –

chunkList Strategy

•  Strategy idea – spark chunks of n
elements (fewer sparks)

strat = chunkList 100 (rpar `dot` rdeepseq)

chunkList n strat =
 fmap concat . evalList strat . chunks
 where chunks = takeWhile (not.null)
 . map (take n)
 . iterate (drop n)

prop_chunkList k xs = k > 0 ==>

 xs == xs `using` chunkList k rdeepseq

chunkList is parListChunk

•  This function already exists in the
strategies library (I missed it first time!)

16000 in <24s

Summary

•  Strategies, in theory:
– Algorithm + Strategy = Parallelism

•  Strategies, in practice (sometimes):
– Algorithm + Strategy = No Parallelism

•  laziness is the magic ingredient that
bestows modularity, but laziness can be
tricky to deal with.

Where to look next

•  Other alternatives are emerging, see e.g.
– The Par monad: abandon modularity via

laziness for more explicit concurrency
– Data-parallel Haskell – operations on bulk

data (think GPU’s – thousands of cores)

Further Reading

•  Many slides here adapted from Simon
Marlow’s CEFP summer school slides

•  http://research.microsoft.com/en-us/
people/simonmar
–  /par-tutorial.pdf
–  /papers/strategies.pdf

•  haskell.org/haskellwiki/ThreadScope

