
Chalmers | Göteborgs Universitet 2011-12-13

David Sands, D&IT

Functional Programming TDA 452/451, DIT 142/141

2011-12-13 14.00 – 18.00 VV (“Väg och Vatten”)

David Sands, 0737 207663

• There are 4 Questions with maximum 11 + 9 + 16 + 6 = 42 points; a total of 20 points
definitely guarantees a pass.

• Results: latest within 21 days.

• Permitted materials:

– Dictionary

• Please read the following guidelines carefully:

– Read through all Questions before you start working on the answers.

– Begin each Question on a new sheet.

– Write clearly; unreadable = wrong!

– Full points are given to solutions which are short, elegant, and correct. Fewer points
may be given to solutions which are unnecessarily complicated or unstructured.

– For each part Question, if your solution consists of more than a few lines of Haskell
code, use your common sense to decide whether to include a short comment to
explain your solution.

– You can use any of the standard Haskell functions listed at the back of this exam
document, plus any functions of the QuickCheck library.

– You are encouraged to use the solution to an earlier part of a Question to help
solve a later part — even if you did not succeed in solving the earlier part.

A computer once beat me at chess. But it was no match for me at kick boxing.

1

Question 1. (a) (2 points) Give the type of the following function:

q1 [] _ = []

q1 ((x:xs):xss) y = (x < y, True) : q1 xss y

Solution

q1 :: (Ord t) => [[t]] -> t -> [(Bool,Bool)]

(b) (2 points) Redefine q1 without using recursion (but you may use any recursive
functions defined in the Prelude). Solution

q1’ xss y = map (\(x:_) -> (x < y, True)) xss

(c) (3 points) Simplify the following function definition as much as possible and give
its type:

q1c x y

| x /= False = odd y : []

| x == True && even y = [False]

| otherwise = [] ++ [False]

Solution

q1c’ :: Integral a => Bool -> a -> [Bool]

q1c’ x y = [x && odd y]

(d) (4 points) Define a function maxDiff which, given a list of Integers, returns the
largest difference between any two consecutive integers in the list. For example,

maxDiff [3,1,-3,0,1,3,5]

should return 4. maxDiff [1] and maxDiff [] are both 0. (Note: the “difference”
between 1 and -3 is the same as between -3 and 1).

Your definition must use a single tail-recursive helper function, and no other re-
cursive functions.

Solution

maxDiff :: [Integer] -> Integer

maxDiff = md 0

where

md a (x:y:xs) = let d = abs (x - y) in md (max a d) (y:xs)

md a _ = a

2

Question 2. In this Question, you will design a Haskell datatype to model action diagrams. An
example of an action diagram is given here:

Is it raining?

Grab your
umbrella

Go outside

DONE

Is it warm?

Is the sun
shining?

Stay inside

DONE

Check the
temperature

Go swimming

DONE

Go to the park

DONE

yes

noyes

yes no

no

	

We can see that action diagrams contain three kinds of elements: Choice elements
(diamond shapes) that contain a yes/no question, Action elements (rectangular shapes)
that contain an action, and Terminal elements (round shapes) where the action diagram
stops. One can take a path through an action diagram by starting at the top, answering
all the questions with either yes or no, and following all arrows until arriving at a
terminal DONE.

(a) (3 points) Define a recursive Haskell datatype Diagram that models the concept
of action diagrams as described above. You may represent questions and actions
simply as Strings. Solution

data Diagram = Done | Action String Diagram | Q String Diagram Diagram

(b) (2 points) Give the definition of a Haskell value

example :: Diagram

Solution

example = Q "Raining?" umbrella (Action "Temp" warm)

where umbrella = Action "Umbrella" (Action "Outside" Done)

warm = Q "Warm?" sunny (Action "StayIn" Done)

sunny = Q "Sunny?" (Action "Swim" Done) (Action "Park" Done)

that represents the above picture. You should use local definitions to improve
readability. You may abbreviate the strings involved e.g. “Raining?”.

(c) (4 points) Define the following function:

actions :: Diagram -> [Bool] -> [String]

This function, given an action diagram, and a list of the answers to all questions
on the way (False=no, True=yes), produces a list of actions that we need to take.
You may assume that there are enough answers to the questions in the list, and
that unused anwers are ignored. Example:

3

Main> actions example [True]

["Grab your umbrella", "Go outside"]

Main> actions example [False,True,True]

["Check the temperature", "Go swimming"]

Solution

actions Done _ = []

actions (Action s d) bs = s: actions d bs

actions (Q _ yes no) (b:bs)

| b = actions yes bs

| otherwise = actions no bs

4

Question 3. The two-player game known as Connect 4 involves a 7× 6 grid consisting of 7 columns,
each holding at most 6 tokens. One player has black tokens and the other has red. The
grid is placed in a vertical plane as illustrated.

Players take it in turns to drop a token into any non-full column; the token falls to the
lowest empty slot in that column.

The objective of the game is to become the first player to get four tokens in a straight
line.

For the purposes of the following questions the exact definition of a “win” will not be
important, since we will ignore this aspect of the game.

In the questions that follow we will use the following to model a C4 board:

data C4 = C4 [Column]

deriving (Eq,Show)

type Column = [Player]

data Player = Red | Black

deriving (Eq,Show)

example1 = C4 [[],[],[Red],[Black,Black,Red],[Black],[],[]]

Each column is represented by a list where the last element in each list is the most
recent play. In example1 above, if player Red decides to play in column 5 then the
result would be

example2 = C4 [[],[],[Red],[Black,Black,Red],[Black,Red],[],[]]

[The questions begin on the next page]

5

(a) (4 points) The datatype invariant for a C4 is that (i) no column has more than 6
tokens, (ii) there are at most 7 columns, (iii) the difference between the number
of tokens that each player has played is at most one. We will call a C4 with these
properties a legal C4. Give a definition of a function

legalC4 :: C4 -> Bool

which checks whether the given C4 is legal.

Solution

legalC4 (C4 cs) = length cs == 7 && all ((<= 6) . length) cs && balanced

where balanced = number Red - number Black ‘elem‘ [-1,0,1]

number p = length $ filter (==p) $ concat cs

(b) (4 points) Define a function

play :: Player -> Int -> C4 -> Maybe C4

where play p i c4 will try to create the C4 resulting from dropping a token of
player p into column i of c4. So for instance

play Red 5 example1 == Just example2

If the resulting C4 is not legal (does not satisfy the invariant) for whatever reason
then the result is Nothing, so for example

play Black 1 example1 == Nothing

Solution

play p ci (C4 cs)

| ci < 1 || ci > 7 = Nothing

| legalC4 cs’ = Just cs’

| otherwise = Nothing

where

cs’ = let (f,i:b) = splitAt (ci-1) cs

in C4 $ f ++ (i ++ [p]):b

(c) (4 points) A run of a game can be represented by a list of column numbers, repre-
senting the list of alternating moves by the players (so the odd-indexed elements
of the list are the moves from the first player, and the even-indexed elements are
the moves from the second player).

Define a function

run :: C4 -> Player -> [Int] -> C4

where run c p m calculates the final C4 obtained after playing the sequence of
moves m starting on the board c where player p makes the first move. If any move
results in an illegal C4 then that move is discarded and the current player replays
with the next move in the sequence. Solution

run c4 p [] = c4

run c4 p (m:ms) = case play p m c4 of

Just c4’ -> run c4’ (otherPlayer p) ms

Nothing -> run c4 p ms

otherPlayer Red = Black

otherPlayer Black = Red

6

(d) (4 points) Define a QuickCheck generator for legal C4s, and make C4 an instance
of class Arbitrary. Hints: use the function run. QuickCheck function

vectorOf :: Int -> Gen a -> Gen [a]

(among others) may be useful here. Solution

instance Arbitrary C4 where

arbitrary = do

n <- choose (1,6*7)

moves <- vectorOf n (elements [1..7])

player1 <- elements [Black,Red]

return $ run emptyC4 player1 moves

emptyC4 = C4 (replicate 7 [])

7

Question 4. The datatype Maybe is used to model a computation which might fail. For example,
the function lookup :: Eq a => [(a,b)] -> a -> Maybe b tries to lookup a key in
a key-value table, and returns Nothing if the lookup fails.

One problem with Maybe is that it has no way to carry any useful information about
the reason for the failure. Instead we could use the standard datatype Either instead
of Maybe:

data Either a b = Left a | Right b deriving (Eq, Show)

The idea is to use the type Either String a to model a computation of a which might
fail, where the string is a suitable error message. For convenience we define:

type MayErr a = Either String a

As an example consider a safe division function:

safeDiv :: Integral a => a -> a -> MayErr a

safeDiv i j | j /= 0 = Right (i ‘div‘ j)

| otherwise = Left ("Error: divide " ++ show i ++ " by zero")

(a) (2 points) Since many standard functions already use Maybe, it is useful to define
a function which when given an error string, converts a Maybe a to an MayErr a.
Define the following function to achieve this:

failsWith :: Maybe a -> String -> MayErr a

Solution

failsWith Nothing s = Left s

failsWith (Just a) _ = Right a

(b) (4 points) In the exam the crucial definition of the monad itself was missing.
Unfortunately there were no questions about this so it didn’t get spotted.

We can make MayErr an instance of Monad as follows

instance Monad MayErr

Note that this is very similar to the instance for Maybe. (It is in fact the standard
instance definition provided for any type Either a and not just for Either String

as given here).

The following code uses three lookup tables to compute a triple consisting of the
name, personal number, and crime associated with a given car licence number.

suspiciousCar :: LicenceNr -> Maybe (Name, Pid, Crime)

The details of the various types are not important, but you may assume they are
in class Show.

Question: Rewrite this definition to have type

suspiciousCar’ :: LicenceNr -> MayErr (Name, Pid, Crime)

making use of failsWith to provide better information, and do-notation to simplify
the code. (Suggestion: use failsWith in infix-form)

Solution

8

-- Worse case: the three lookups are dependent on each other:

suspiciousCar car =

case lookup car carRegister of

Nothing -> Nothing

Just pnr -> case lookup pnr nameRegister of

Nothing -> Nothing

Just name -> case lookup name crimeRegister of

Nothing -> Nothing

Just crime -> Just (name,pnr,crime)

-- which could be rewritten as:

suspiciousCar’ car = do

pnr <- lookup car carRegister

‘failsWith‘ ("No pnr found for " ++ show car)

name <- lookup pnr nameRegister

‘failsWith‘ ("No name found for " ++ show pnr)

crime <- lookup name crimeRegister

‘failsWith‘ ("No crime found for " ++ show name)

return (name,pnr,crime)

{- Other correct solutions assumed the lookups were independent and

tried to report all errors. -}

9

