
TDA361 - Computer Graphics

Ulf Assarsson

Department of Computer Engineering

Chalmers University of Technology

Tracing Photons

One way to form an image is to

follow rays of light from a

point source finding which

rays enter the lens of the

camera. However, each

ray of light may have

multiple interactions with objects

before being absorbed or going to infinity.

Other Physical Approaches

• Ray tracing: follow rays of light from center of
projection until they either are absorbed by
objects or go off to infinity

– Can handle global effects

• Multiple reflections

• Translucent objects

– Faster but still slow

Tomas Akenine-Mőller © 2002

I’m only here to help…

1. I am located in room 4115 in ”EDIT-huset”

2. Email: uffe at chalmers dot se

3. Phone: 031-772 1775 (office)

4. Course assistant:
1. ola.olsson at chalmers dot se

2. billeter at chalmers dot se (Markus Billeter)

3. maria.lemon at hotmail dot com

Kursutvärderingar vid Chalmers

Studentrepresentanternas ansvar

• Informerar sig om sina kurskamraters synpunkter
på kursen.

• Vidarebefordrar dessa samt deltar i övrigt i
diskussionen vid mötena med egna synpunkter.

• Kan föreslå kursspecifika frågor i kursenkäten.

• Informerar sina kurskamrater om diskussioner och
rekommendationer från mötena.

Ersättning utgår i form av presentkort på 200

kr på Cremona.

Course Info

 Real Time Rendering, 3rd edition

◦ Available on Cremona

 Homepage:

◦ Google “TDA361” or

◦ “Computer Graphics Chalmers”

Tutorials

• Rooms 4211,4213,4215,4220

– Or your favorite place/home

• 4th floor EDIT-building

• EntranceCards (inpasseringskort)

– Automatically activated for all of you that are

course registered and have a CTH/GU-entrance

card (inpasseringskort)

• Recommended to do the tutorials in groups

(Labgrupper) of 2 and 2

Overview of the

Graphics Rendering Pipeline

and OpenGL

 Department of Computer Engineering

3D Graphics

Ulf

Assarsson

 Department of Computer Engineering

The screen consists of many pixels

 Department of Computer Engineering

3D-Rendering

• Objects are often made

of triangles

• x,y,z- coordinate for

each vertex

Z

X

Y

Why only

triangles?

 Department of Computer Engineering

4D Matrix Multiplication











































w

z

y

x

ts

ts

ts

zz

yy

xx

1000

 Department of Computer Engineering

Real-Time Rendering

 Department of Computer Engineering State-of-the-Art

Real-Time Rendering

2001
Z

X

Y

 Department of Computer Engineering

+ =

 One application of texturing is to ”glue”

images onto geometrical object

Textures

 Department of Computer Engineering

Texturing: Glue images onto

geometrical objects

• Purpose: more realism, and this is a cheap way to do
it

+ =

 Department of Computer Engineering

Lighting computation per triangle vertex

light

Geometry

blue

red green

Rasterizer

The Graphics Rendering

Pipeline

You say that you render a

”3D scene”, but what is it?

• First, of all to take a picture, it takes a camera – a

virtual one.

– Decides what should end up in the final image

• A 3D scene is:

– Geometry (triangles, lines, points, and more)

– Light sources

– Material properties of geometry

– Textures (images to glue onto the geometry)

• A triangle consists of 3 vertices

– A vertex is 3D position, and may

include normals and more.

Lecture 1: Real-time Rendering

The Graphics Rendering Pipeline

• The pipeline is the ”engine” that creates

images from 3D scenes

• Three conceptual stages of the pipeline:

– Application (executed on the CPU)

– Geometry

– Rasterizer

Application Geometry Rasterizer

3D

scene input

Image

output

The APPLICATION stage

• Executed on the CPU

– Means that the programmer decides what
happens here

• Examples:

– Collision detection

– Speed-up techniques

– Animation

• Most important task: send rendering
primitives (e.g. triangles) to the graphics
hardware

Application Geometry Rasterizer

The GEOMETRY stage

•

• Allows:

– Move objects (matrix multiplication)

– Move the camera (matrix multiplication)

– Lighting computations per triangle vertex

– Project onto screen (3D to 2D)

– Clipping (avoid triangles outside screen)

– Map to window

Application Geometry Rasterizer

Task: ”geometrical” operations

on the input data (e.g. triangles)

The GEOMETRY stage

• (Instances)

• Vertex Shader

– A program executed

per vertex

• Transformations

• Projection

• Clipping

• Screen Mapping

Application Geometry Rasterizer

Model & View

Transform

Vertex

Shading

Projection

Clipping

Screen

Mapping ()

The RASTERIZER stage
• Main task: take output from GEOMETRY

and turn into visible pixels on screen

Application Geometry Rasterizer

 Computes color per pixel, using fragment
shader (=pixel shader)
- textures and various other per-pixel operations

 And visibility is resolved here: sorts the
primitives in the z-direction

Rendering Pipeline and
Hardware

Application Stage

Geometry Stage

Rasterization Stage

CPU GPU

Tomas Akenine-Mőller © 2003 26

Rendering Pipeline and
Hardware

HARDWARE

Vertex

shader

Pixel

shader

Display

Geometry

shader
Merger

Appli-

cation

Stage

CPU

Geometry Stage

Rasterization Stage

GPU

Tomas Akenine-Mőller © 2003 27

Hardware design

light

Geometry

blue

red green

Vertex shader:

•Lighting (colors)

•Screen space positions

HARDWARE

Vertex

shader

Pixel

shader

Display

Geometry

shader
Merger

Tomas Akenine-Mőller © 2003 28

Hardware design Geometry shader:

•One input primitive

•Many output primitives

HARDWARE

Vertex

shader

Pixel

shader

Display

Geometry

shader
Merger

or

Tomas Akenine-Mőller © 2003 29

Hardware design Clips triangles against

the unit cube (i.e.,

”screen borders”)

HARDWARE

Vertex

shader

Pixel

shader

Display

Geometry

shader
Merger

Tomas Akenine-Mőller © 2003 30

Hardware design Maps window size to

unit cube

HARDWARE

Vertex

shader

Pixel

shader

Display

Geometry

shader
Merger

Hardware design

Tomas Akenine-Mőller © 2003 31

HARDWARE

Vertex

shader

Pixel

shader

Display

Geometry

shader
Merger

Collects three vertices

into one triangle

Hardware design

Tomas Akenine-Mőller © 2003 32

HARDWARE

Vertex

shader

Pixel

shader

Display

Geometry

shader
Merger

Creates the

fragments/pixels for the

triangle

blue

red green
Rasterizer

Hardware design

Tomas Akenine-Mőller © 2003 33

HARDWARE

Vertex

shader

Pixel

shader

Display

Geometry

shader
Merger

Pixel Shader:

Compute color

using:

•Textures

•Interpolated data

(e.g. Colors +

normals) from

vertex shader

Hardware design

Tomas Akenine-Mőller © 2003 34

HARDWARE

Vertex

shader

Pixel

shader

Display

Geometry

shader
Merger

Frame buffer:

• Color buffers

• Depth buffer

• Stencil buffer

The merge units update

the frame buffer with the

pixel’s color

 Department of Computer Engineering

What is vertex and fragment (pixel)

shaders?
• Memory: Texture memory

(read + write) typically 500 Mb

– 4 GB

• Program size: the smaller the

faster

• Instructions: mul, rcp, mov,dp, rsq,

exp, log, cmp, jnz…

 Department of Computer Engineering

Cg - ”C for Graphics” (NVIDIA)

 Department of Computer Engineering

• Float, int

• Instructions
operate on 1,2,3 or
4 components
– x,y,z,w or

– r,g,b,a

• Free Swizzling

• Only read from
texture

• (Only write to
pixel (8 output
buffers))

PixelShader 3.0
normalization

Rewind!

Let’s take a closer look

• The programmer ”sends” down primtives to

be rendered through the pipeline (using API

calls)

• The geometry stage does per-vertex

operations (and per-triangle operations)

• The rasterizer stage does per-pixel

operations

• Next, scrutinize geometry and rasterizer

Application Geometry Rasterizer

GEOMETRY - Summary

Application Geometry Rasterizer

model space world space world space

compute lighting

camera space

projection

image space

clip
map to screen

Done in vertex shader
Fixed hardware

Virtual Camera

• Defined by position, direction vector, up
vector, field of view, near and far plane.

 point
dir

near

far
fov

(angle)

 Create image of geometry inside gray region

 Used by OpenGL, DirectX, ray tracing, etc.

GEOMETRY - The view transform

• You can move the camera in the same

manner as objects

• But apply inverse transform to objects, so

that camera looks down negative z-axis

z x

Application Geometry Rasterizer

GEOMETRY - Summary

Application Geometry Rasterizer

model space world space world space

compute lighting

camera space

projection

image space

clip
map to screen

GEOMETRY - Lighting

• Compute ”lighting” at vertices

Application Geometry Rasterizer

light

Geometry

blue

red green

Rasterizer

 Try to mimic how light in nature behaves
– Hard so uses empirical models, hacks, and some real

theory

 Much more about this in later lecture

Example

GEOMETRY - Summary

Application Geometry Rasterizer

model space world space world space

compute lighting

camera space

projection

image space

clip
map to screen

GEOMETRY - Projection

Application Geometry Rasterizer

• Two major ways to do it

– Orthogonal (useful in few applications)

– Perspective (most often used)

• Mimics how humans perceive the world, i.e.,

objects’ apparent size decreases with distance

GEOMETRY - Projection

• Also done with a matrix multiplication!

• Pinhole camera (left), analog used in CG

(right)

Application Geometry Rasterizer

GEOMETRY - Summary

Application Geometry Rasterizer

model space world space world space

compute lighting

camera space

projection

image space

clip
map to screen

GEOMETRY
Clipping and Screen Mapping

• Square (cube) after projection

• Clip primitives to square

Application Geometry Rasterizer

 Screen mapping, scales and translates square
so that it ends up in a rendering window

 These ”screen space coordinates” together
with Z (depth) are sent to the rasterizer stage

GEOMETRY - Summary

Application Geometry Rasterizer

model space world space world space

compute lighting

camera space

projection

image space

clip
map to screen

The RASTERIZER

in more detail

• Scan-conversion

– Find out which pixels are inside the primitive

• Fragment shaders

– E.g. put textures on triangles

– Use interpolated data over triangle

– and/or compute per-pixel lighting

• Z-buffering

– Make sure that what is visible from the camera
really is displayed

• Doublebuffering

Application Geometry Rasterizer

blue

red green

+ =

The RASTERIZER

Z-buffering
• A triangle that is covered by a more closely

located triangle should not be visible

• Assume two equally large tris at different
depths

Application Geometry Rasterizer

Triangle 1 Triangle 2 Draw 1 then 2

incorrect

Draw 2 then 1

correct

• Would be nice to avoid sorting…

• The Z-buffer (aka depth buffer) solves this

• Idea:

– Store z (depth) at each pixel

– When rasterizing a triangle, compute z at each
pixel on triangle

– Compare triangle’s z to Z-buffer z-value

– If triangle’s z is smaller, then replace Z-buffer and
color buffer

– Else do nothing

• Can render in any order

Application Geometry Rasterizer The RASTERIZER

Z-buffering

• The monitor displays one image at a time

• Top of screen – new image

 Bottom – old image

 No control of split position

• And even worse, we often clear the screen

before generating a new image

• A better solution is ”double buffering”

– (Could instead keep track of rasterpos and

vblank).

Application Geometry Rasterizer The RASTERIZER

double-buffering

• Use two buffers: one front and one back

• The front buffer is displayed

• The back buffer is rendered to

• When new image has been created in back

buffer, swap front and back

Application Geometry Rasterizer

The RASTERIZER

double-buffering

OpenGL

A Simple Program

Computer Graphics version of

“Hello World”
Generate a triangle on a solid background

int main(int argc, char *argv[])

{

 glutInit(&argc, argv);

 /* open window of size 512x512 with double buffering, RGB colors, and Z-
buffering */

 glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);

 glutInitWindowSize(512,512);

 glutCreateWindow("Test App");

 /* the display function is called once when the gluMainLoop is called,

 * but also each time the window has to be redrawn due to window

 * changes (overlap, resize, etc). */

 glutDisplayFunc(display); // Set the main redraw function

 glutMainLoop(); /* start the program main loop */

 return 0;

}

Simple Application...

void display(void)

{

 glClearColor(0.2,0.2,0.8,1.0); // Set clear color - for background

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clears the color buffer and the z-buffer

 int w = glutGet((GLenum)GLUT_WINDOW_WIDTH);

 int h = glutGet((GLenum)GLUT_WINDOW_HEIGHT);

 glViewport(0, 0, w, h); // Set viewport

 glDisable(GL_CULL_FACE);

 drawScene();

 glutSwapBuffers(); // swap front and back buffer. This frame will now been displayed.

}

static void drawScene(void)

{

 // Shader Program

 glUseProgramObjectARB(shaderProgram); // Set the shader program to use for this draw call

 CHECK_GL_ERROR();

 glBindVertexArray(vertexArrayObject);

 CHECK_GL_ERROR();

 glDrawArrays(GL_TRIANGLES, 0, 3); // Render three points with the current sources

 CHECK_GL_ERROR();

}

Shaders

// Fragment Shader:

#version 130

in vec3 outColor;

out vec4 fragColor;

void main()

{

 fragColor =

vec4(outColor,1);

}

// Vertex Shader

#version 130

in vec3 vertex;

in vec3 color;

out vec3 outColor;

uniform mat4 modelViewProjectionMatrix;

void main()

{

 gl_Position = modelViewProjectionMatrix*vec4(vertex,1);

 outColor = color;

}

Demonstration of SimpleApp

– Available on course homepage in Schedule.

Cooler application

Starts

looking

good!

Repetition

• What is important:

– Understand the Application-, Geometry- and

Rasterization Stage

