h,.,.

TDASG] B

Ulf Assarsson
Department of Computer Engineering

Chalmers University of Technology

Tracing Photons

One way to form an image Is to
follow rays of light from a

point source finding which

rays enter the lens of the

camera. However, each

ray of light may have

multiple interactions with objects
before being absorbed or going to infinity.

Other Physical Approaches

 Ray tracing: follow rays of light from center of
projection until they either are absorbed by
objects or go off to infinity

—Can handle global effects
« Multiple reflections
 Translucent objects

—Faster but still slow

I’m only here to help...

1. | am located in room 4115 in "EDIT-huset”
2. Email: uffe at chalmers dot se

3. Phone: 031-772 1775 (office)
4

Course assistant:

1. ola.olsson at chalmers dot se
2. billeter at chalmers dot se (Markus Billeter)
3. maria.lemon at hotmail dot com

CHALMERS

Studentrepresentanternas ansvar

* Informerar s1ig om sina kurskamraters synpunkter
pa kursen.

* Vidarebefordrar dessa samt deltar 1 Ovrigt 1
diskussionen vid motena med egna synpunkter.

e Kan foresla kursspecifika fragor 1 kursenkaten.

e Informerar sina kurskamrater om diskussioner och
rekommendationer fran motena.

Ersattning utgar 1 form av presentkort pa 200
kr pa Cremona.

Kursutvérderingar vid Chalmers

Course Info

Real-Time

» Real Time Rendering, 37 edition [Raic

o Available on Cremona

* Homepage:
> Google “TDA361” or

o “Computer Graphics Chalmers”

Tutorials

Rooms 4211,4213,4215,4220
— Or your favorite place/home

4™ floor EDIT-building

EntranceCards (inpasseringskort)

— Automatically activated for all of you that are
course registered and have a CTH/GU-entrance
card (inpasseringskort)

Recommended to do the tutorials in groups
(Labgrupper) of 2 and 2

Overview of the
Graphics Rendering Pipeline
and OpenGL

CHALMERS

UIf
ASSarsson

CHALMERS Department of Computer Engineering

The screen consists of many pixels

CHALMERS Department of Computer Engineering

3D-Rendering

* Objects are often made
of triangles

* X,y,Z- coordinate for
each vertex

Infinitely extending viewing
frustum formed from
viewer's aye through the
comers of the display screen
window

Polygon in world

¢

Display screen window
showing polygon's
projeclion Z

Viewer's eye

CHALMERS Department of Computer Engineering

4D Matrix Multiplication

L || X
® § o’[yy
l

Real-Time Rendering

CHALMERS Department of Computer Engineering

Textures

e One application of texturing is to "glue”
Images onto geometrical object

CHALMERS Department of Computer Engineering

Texturing: Glue 1mages onto
geometrical objects

» Purpose: more realism, and this is a cheap way to do
it

CHALMERS Department efsComputer Eggineering

Lighting computation per triangle vertex

® Iight Rasterizer
/ blue

red green

The Graphics Rendering
Pipeline

You say that you render a
”3D scene”’, but what IS 1t?

 First, of all to take a picture, it takes a camera— a
virtual one.
— Decides what should end up in the final image

« A 3D scene Is:
— Geometry (triangles, lines, points, and more)
— Light sources
— Material properties of geometry
— Textures (images to glue onto the geometry)

» A triangle consists of 3 vertices \

— A vertex Is 3D position, and may
Include normals and more.

Lecture 1. Real-time Render
The Graphics Rendering

INg
Pipeline

* The pipeline 1s the ’engine” {l
Images from 3D scenes

nat creates

 Three conceptual stages of the pipeline:
— Application (executed on the CPU)

— Geometry
— Rasterizer

Application Geometry Rasterizer

: 3D
INPUL (scene

Image

output

- Geometry Rasterizer
The APPLICATION stage

e Executed on the CPU

— Means that the programmer decides what
happens here

« Examples:
— Collision detection
— Speed-up techniques
— Animation

» Most iImportant task: send rendering
primitives (e.g. triangles) to the graphics
hardware

Application - Rasterizer
The GEOI\/IETRY stage

, Task: "geometrical” Operatlons
on the Input data (e.g. triangles)

« Allows:
— Move objects (matrix multiplication)
— Move the camera (matrix multiplication)
— Lighting computations per triangle vertex
— Project onto screen (3D to 2D)
— Clipping (avoid triangles outside screen)
— Map to window

Application - Rasterizer
The GEOMETRY stage

Model & View \ertex | Projection | Clipping | Screen
Transform Shading | ' | Mapping

Infinitely extending viewing
frustum formed from
viewer's aye through the
comers of the display screen
window

Polygon in world

* (Instances)

e Vertex Shader

— A program executed
per vertex
 Transformations
 Projection

 Clipping
 Screen Mapping

Display screen window
showing polygon’s

. y projechon

Viewer's eye

Application Geometry -

The RASTERIZER stage
« Main task: take output from GEOMETRY

and turn into visible pixels on screen
|

/

/

—

e Computes color per

nixe

shader (=pixel shader)
- textures and various other per-pixel operations

e And visibility is resolved here: sorts the
primitives in the z-direction

, using fragment

Rendering Pipeline and
Hardware

CPU GPU

Application Stage Geometry Stage

Rasterization Stage

Rendering Pipeline and

Hardware
CPU GPU
cation
Stage

.A

Vertex Geometry
shader shader

| Display |

Hardware design Vertex shader:
-Lighting (colors)

«Screen space positions

Infinitely

ding viewing
frustum fo d from

®light
Polygon in world / b I ue

_1 Geometfy|-> —

green

Display screen window
showing polygon's
projection

Hardware design Geometry shader:
*One input primitive

*Many output primitives

or

Vertex ‘ Geometry | Pixel
shader | shader | shader

Hardware design Clips triangles against
the unit cube (i.e.,

’screen borders™)

|—‘ _«@»
Vertex Geometry Pixel J
shader shader | | shader

| Display |

Hardware design Maps window size to
unit cube

Vertex [J| Geometry Pixel £ N
shader shader shader ’ 3

| Display |

Hardware design Collects three vertices

/>

Into one triangle

A
Vertex Geometry Pixel
shader shader | | shader

| Display |

Hardware design Creates the
fragments/pixels for the
triangle

Vertex Geometry
shader shader

|
N

J
/HEEN

Hardware design \ |
= [ERERRR
/

ENEEEERT
Bl

L

Pixel Shader:

blue Compute color
using:

\ «Textures
g A *Interpolated data

(e.g. Colors +

| Rasterizerl normals) from

vertex shader

red green

Vertex Geometry
shader shader

Hardware design The merge units update
the frame buffer with the

pixel’s color

lllllllllllllllllllllllllllll

Frame buffer:

e Color buffers
« Depth buffer
e Stencil buffer

CHALMERS Department of Computer Engineering
What 1s vertex and fragment (pixel)
shaders?

@ Foreach vertex, a vertex program (vertex shader) is executed

@ For cach fragment (pixel) a fragment program (fragment shader) is executed

CHALMERS Department of Computer Engineering

if |(=51

Cg - ”C for Graphics” (NVIDIA)

ice == 0.0k {

half gradedEta = BallData.ETAL:;

or

adedEta =|1.0h/gradedEta; | // test hack

half3 faceColor = BgColor: /f blown out - go to BG color

half ol =|dot (-Vn,Nf):

half o= = l.0h—gradedEta*gradedEta* (1.0h-cl1*%c1) ;

if

[zs2 >= 0.0h) |
halfi refWVector = gradedEta*Wn+|((gradedEta*cl+sgrticsE)) *NL)
Jf now let's intersect with the iris plane
half irisT = intersect plane (IN.OPosition,refVector,planeEquation) ;
half £adeT irisT * BallData.LENS DENSITY:
fadeT = fadeT * fadeT:
faceColor = DiffPupil.=xxx: S/ temporary [7?)
if (irisT > 01 {
half3i irisPoint = [IN.OFPosition| + irisT*refVector:
halfi iris3T = (iris3cale¥irisPoint) + half3 (0.0h,0.5h,0.5h) ;
fTaceColor =|texZl(ColorMap,iris3T.vz) .rghf

'
faceColor = |lerp(faceColor,LensColor, £fadeT) |
hitColor = lerplitissColor,faceColor, smoothstep (0.0h, GRADE, 2lice)l] ;

CHALMERS

Department of Computer Engineering

A/ 1if (—-dir.z/|dir| * cos(PIf4)) til

dp3d re.w, ro, r6 . .
~— normalization

rsg re.w, ro.uw

wad rd.w, -ro6.z, re.w, -—-cosPicrrerFour

cip rl0.y, rO.w, Zero, rl0.y

A4 set rl0 to 0O if Disc <= 0O
cip rl0.xy, -r?.w, Zero, rl0d

A compute rl1l and r2 clipped
wmad rl.xy=z, re, rld.x, r4
wmad rZ.xy=z, re, rld.y, r4

& o project

rcp rll.w, rl.=

wmad rl.xyvz, rl, rll.w, HNeg:z
rcp rll.w, r2.=
wad rZ.xvz, r2, rll.w, HNegZ

/7 Compute area
texld r3, rl, ATandTexture
texld r4, rZ, ATansdTexture

Crs roh.z,rl,r:2
abs rbh.=z,rh.=

mow ri.y, rid.x
texld rd4, r3, ZphireaTexture

J& IPO
Ji IP1

J8P0

FiP1

4 thetal
4 thetal

;e =

-

<

== PixelShader 3.0

Float, int

Instructions
operate on 1,2,3 or
4 components

— X,y,Z,W Or

— r,g,b,a

Free Swizzling

Only read from
texture

(Only write to
pixel (8 output
buffers))

Application Geometry Rasterizer

Rewind!
[et’s take a closer look

* The programmer ’sends’”” down primtives to
be rendered through the pipeline (using API
calls)

» The geometry stage does per-vertex
operations (and per-triangle operations)

» The rasterizer stage does per-pixel
operations

» Next, scrutinize geometry and rasterizer

Application - Rasterizer
GEOMETRY - Summary

T N (T N
HjO §\ho
H:(}[F"’ | \\\—r
o \Q b
s Y\ D/ A\ D,
model space world space world space
_>o~! O RdL AL S
O O
compute lighting irr?;(;jeeztg;r;e clip

Done in vertex shader

(

)yQ
Q

Ccamera space

S

map to screen

Fixed hardware

Virtual Camera

 Defined by position, direction vector, up
vector, field of view, near and far plane.

dir

fov near
(angle)

e Create image of geometry inside gray region
e Used by OpenGL, DirectX, ray tracing, etc.

point far

el

Application - Rasterizer
GEOMETRY - The view transform

 You can move the camera In the same
manner as objects

 But apply inverse transform to objects, so
that camera looks down negative z-axis

‘ . \Xé*\y |
iV

=of

model space

~

(

—

\

’./

@

\

-

O

Application - Rasterizer
GEOMETRY - Summar

)

O

|

-

world space

O

&

/

.

compute lighting

projection

Image space

G
world space

clip

\
DyQ

Q@

N

7

Ccamera space

S

map to screen

GEOMETRY - Lighting

* Compute “lighting” at vertices

light
/4 o

e Try to mimic how light in nature behaves

Application - Rasterizer

blue

red

green

Rasterizer

- Hard so uses empirical models, hacks, and some real

theory

e Much more about this In later lecture

Application - Rasterizer
GEOMETRY - Summary

H:(}EF—» Hj@ —Fi\ﬁj\o\—»
o

on
Q

e | h
model space world space Wz)rld space camera space
4 1
O @ el N
’ o
= map to screen
projection clip P

compute lighting image space

soptcaon [GERRG Restenzer
GEOMETRY - Projection

« Two major ways to do It
— Orthogonal (useful in few applications)

— Perspective (most often used)

« Mimics how humans perceive the world, i.e.,
objects’ apparent size decreases with distance

Application - Rasterizer

GEOMETRY - Projection

» Also done with a matrix multiplication!
 Pinhole camera (left), analog used in CG

(right)

=~
-
-
- -
-

Application - Rasterizer
GEOMETRY - Summary

ﬂ(}&» Hj@ —Fi\ﬁj\o\—»
o

oyO
Q

o | ™

\
model space world space world space camera space

0’@ o N
—_ | —>~ O |=» o |=>

S

. : map to screen
projection clip P

compute lighting image space

GEOMETRY Application - Rasterizer
Clipping and Screen Mapping

 Square (cube) after projection
 Clip primitives to square

P <j_. - <
O O

e Screen mapping, scales and translates square
so that it ends up in a rendering window

e These "screen space coordinates” together
with Z (depth) are sent to the rasterizer stage

GEOMETRY - Summary

=of

-

O

Application - Rasterizer

\

O

model space

o’@

- @

compute lighting

|

-

\Hj

\

—p
N

\Q\
o I

world space

@
B

O |=»

projection
Image space

\
world space

clip

(

)yQ
Q

(7 =)
* u
S
\ >4

Ccamera space

map to screen

Application Geometry -
The RASTERIZER

IN more detall

Scan-conversion D

— Find out which pixels are inside the primitive

Fragment shaders
— E.g. put textures on triangles

— Use interpolated data over triangle btue . .
— and/or compute per-pixel lighting — —
Z-buffering

— Make sure that what iIs visible from the camera
really Is displayed

Doublebuffering

+

The R ASTERIZER Application ~ Geometry -
Z-buffering

A triangle that is covered by a more closely
located triangle should not be visible

« Assume two equally large tris at different
depths

incorrect correct

a4 W M

Triangle 1 Triangle 2 Draw 1 then 2 Draw 2 then 1

The R ASTERIZER Application ~ Geometry -
Z-buffering

* Would be nice to avoid sorting...
» The Z-buffer (aka depth buffer) solves this

o |dea:
— Store z (depth) at each pixel

— When rasterizing a triangle, compute z at each
pixel on triangle

— Compare triangle’s z to Z-buffer z-value

— If triangle’s z is smaller, then replace Z-buffer and
color buffer

— Else do nothing
« Can render in any order

e

The R ASTERIZER Application ~ Geometry -
double-buffering

« The monitor displays one image at a time
» Top of screen — new image

Bottom — old image

No control of split position

 And even worse, we often clear the screen
before generating a new image

A better solution 1s “double buffering”

— (Could instead keep track of rasterpos and
vblank).

Application Geometry -
The RASTERIZER

double-buffering

e Use two buffers: one front and one back
 The front buffer is displayed

 The back buffer Is rendered to

* When new image has been created in back
buffer, swap front and back

OpenGL

A Simple Program
Computer Graphics version of
“Hello World”

Generate a triangle on a solid background

EEX

Simple Application...

int main(int argc, char *argv[])

{

glutlnit(&argc, argv);

/[* open window of size 512x512 with double buffering, RGB colors, and Z-
buffering */

glutinitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);
glutinitWindowSize(512,512);
glutCreateWindow("Test App");

/* the display function is called once when the gluMainLoop is called,
* put also each time the window has to be redrawn due to window

* changes (overlap, resize, etc). */

glutDisplayFunc(display); // Set the main redraw function

glutMainLoop(); /* start the program main loop */
return O;

void display(void)

{
glClearColor(0.2,0.2,0.8,1.0); // Set clear color - for background

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clears the color buffer and the z-buffer
int w = glutGet((GLenum)GLUT_WINDOW_WIDTH);

int h = glutGet((GLenum)GLUT_WINDOW_HEIGHT);

glViewport(0, 0, w, h); /I Set viewport

glDisable(GL_CULL_FACE);
drawScene();

glutSwapBuffers(); // swap front and back buffer. This frame will now been displayed.

static void drawScene(void)

{
// Shader Program

glUseProgramObjectARB(shaderProgram); // Set the shader program to use for this draw call
CHECK_GL_ERROR();

glBindVertexArray(vertexArrayObject);
CHECK_GL_ERROR();

glDrawArrays(GL_TRIANGLES, 0, 3); // Render three points with the current sources
CHECK_GL_ERROR();

Shaders

/I Vertex Shader I/ Fragment Shader:
#version 130 #Version 130
e in vec3 outColor:;

in vec3 color; out vec4 fragColor;
out vec3 outColor;
uniform mat4 modelViewProjectionMatrix;

void main()
void main() {
{ fragColor =
gl_Position = modelViewProjectionMatrix*vec4(vertex,1); vec4(outColor,1);
outColor = color; }

Demonstration of SimpleApp

— Available on course homepage in Schedule.

(LN aN&) TDA361 Computer Graphics
[- | 2] [+ |ﬁ http: [/ /www.cse.chalmers.se/edu/course/TDA361/schedule.html G] I.\Q' Google !

&3 [## Google Apple Yahoo! GoogleMaps YouTube News (693)v Popularv Dictionary.com Eniro Personer UIf Assarss..s Home Page

CHALMERS
Computer Engineering

Computer Science and Engineering -~ Chalmers University of Technology and Géteborg University

TDA361/DIT220 - Computer
graphics 2011 Ip2

Examiner:

uffe@chalmers.se

Ho Schedule Literature Tutorials Exam

SCHEDULE:
‘Wednesdays 10-12, room EA.
Fridays, 9-12, room EC.

= Alllectures are at Campus Johanneberg

for lecture hall and tutorial rooms

The following plan may change during the course. The links for the Bonus-OH are located under the table.
Bonus material is simply non-compulsory additional material that is fun or highlighting for the interested reader.
The column "Tutorial” states when it is wise to start working on the corresponding tutorial.

Lésenordsskyddade bonusfiler packas upp med lésenord “"datorgrafik™.

All self-studies below are non-compulsory

NOTE: If you are using the 2:nd edition of Real-Time Rendering, for the compulsory RTR-chapter hints, see 2007's schedule

Lecture Readings/Lésanvisningar Tutorial{|Deadlines
s ——————
RTR chapter2, ch 15.2.

Lecture 1 - Introduction +
Fipeline and OpenGL Bonus: \ - the test application shown at lecture,
. Also, see with

Bonus material:

Lecture slides in chronological order:

Cooler application

Repetition

« What Is important:

— Understand the Application-, Geometry- and
Rasterization Stage

