
 Page 1

TDA361 - Computer graphics 2011

Lab 1 - Basics

Introduction

In this tutorial we will start familiarizing ourselves with OpenGL. To do
this, there is a simple OpenGL application that you will study. Make

sure you read all the comments, and understand what each command
does. If anything is unclear, refer to the OpenGL 3.0 specification,
where pretty much everything is described, and in a quite readable

way, believe it or not! Even more OpenGL documentation is available in
the OpenGL registry. If this fails to clarify ask one of the lab assistants
for help, as you will need to understand this for later tutorials.

Your Task

The program we will work with currently draws a single, white, triangle
on screen, similar to the image on the right. Begin by taking a look at
the code.

Exercise 1: The code initializes vertex buffer objects in three steps, as shown in the left column below. The
right column contains several OpenGL functions. Connect each step (left column) to the corresponding
function on the right side with a drawn line.

Exercise 2: The glBindBuffer() command has an input parameter called target. What possible targets are

there? Look in the OpenGL specification (§2.9 Buffer Objects) and write your answer here:

Now, your first task is to change the color of the triangle. If you only change the values in the

appropriate vertex buffer object, you’ll notice that nothing happens. The reason is that the vertex - and
fragment-shaders are not complete yet. We’ll fix this in the following steps!

Take a look at the simple.vert file. The vertex color is declared as the attribute color in the beginning of this
shader, but from then on it is ignored.

http://www.cse.chalmers.se/edu/course/TDA361/glspec30.20080923.pdf
http://www.opengl.org/registry/
http://www.cse.chalmers.se/edu/course/TDA361/glspec30.20080923.pdf

 Page 2

We’ll need to pass the vertex color value on to the fragment shader so declare a second output from the
vertex shader (before main()) like this:

out vec3 outColor;

Then, set this output variable in the main() function:

outColor = color;

Now, open the fragment shader (simple.frag) and tell it to expect a variable outColor from the vertex
shader:

in vec3 outColor;

And then change this line that currently sets all fragments to be white:

fragmentColor = vec4(1,1,1,1);

to instead use the color passed in from the vertex-shader:

fragmentColor.rgb = outColor;

There! Now make sure your vertex buffer object has some fun colors in it and run the program again.

Exercise 3: Somehow the data from your colorBuffer vertex buffer object ends up in the c̀olor’ attribute in

the vertex shader (simple.vert). Similarly, the positionBuffer vertex buffer object data ends up in the
`position’ attribute. The chart below shows how the program links these different parts together.

Objects here are either buffer objects (BO) or vertex array objects (VAO). Specify the type of the objects by
writing BO or VAO in the chart in the “Type:” fields. The table below lists four OpenGL calls. Each call
corresponds to a link in the chart. Identify which link by writing the numbers 1-4 in the table!

Link Number OpenGL Call/Code

 glBindBuffer(GL_ARRAY_BUFFER, colorBuffer);
glVertexAttribPointer(1, 3, GL_FLOAT, false/*normalized*/, 0/*stride*/, 0/*offset*/);
glEnableVertexAttribArray(1);

 glBindAttribLocation(shaderProgram, 0, "position");

 Page 3

 glBindBuffer(GL_ARRAY_BUFFER, positionBuffer);
glVertexAttribPointer(0, 3, GL_FLOAT, false/*normalized*/, 0/*stride*/, 0/*offset*/);
glEnableVertexAttribArray(0);

 glBindAttribLocation(shaderProgram, 1, "color");

Exercise 4: The vertex shader (simple.vert) outputs a color (outColor), which is passed to the fragment
shader. How is the color output from the vertex shader linked to the color input of the fragment shader?
(pick one of the following three alternatives)

 (a) using the glBindFragDataLocation() call

 (b) by name (i.e. both times the variable is named `outColor’)

 (c) by pure luck. Sacrificing cute animals in the name of the Red Book may help.

Now, your task is to draw a second triangle. This shall be accomplished by creating a new vertex array
object in the initGL() function and then draw that object in the display() function. The second triangle must
not cover the existing triangle, you are otherwise free to place both triangles as you please.

Next, you shall add a third triangle to the scene. This time, you shall not create a new VAO. Instead,
simply add position and color data to the previous VAO. Again, this triangle may not overlap any of the
previous triangles.

The final solution might look something like the picture on the right.

Exercise 5: How many times are the vertex- and fragment-

shader’s main() functions executed when a single frame is
rendered?

 Vertex
Shader

Fragment
Shader

A single time per frame

Once for each vertex
(here: 9 times)

Approximately once for each
drawn pixel in the image

Exercise 6: The vertex- and fragment-shaders are linked together into a single program object, which is
used (glUseProgram()) to draw the triangle. The chart below illustrates the process. Complete the chart by
filling the “Created with:” fields with the name of the OpenGL function that is used to create the objects.

Next associate the numbers 1-4 and the letters A-C with the correct OpenGL calls in the table below.

 Page 4

Link

Number/Letter
OpenGL Call/Code

 glLinkProgram()

 glCompileShader()

 glCompileShader()

 glShaderSource()

 glShaderSource()

 glAttachShader()

 glAttachShader()

To reiterate; the purpose of this tutorial is to understand how the triangles end up on screen. Working in
groups it may be a good idea to interrogate one another, let one explain to the other(s) what each line
does, the person listening should make sure that he or she is satisfied that the answer really explains what

is going on. And again if the OpenGL specification fails to help, ask an assistant!

