Intersection Testing
Chapter 16

Tomas Akenine-Moller
Department of Computer Engineering
Chalmers University of Technology

What for?

e A tool needed for the graphics people all the
time...

e Very important components:
- Need to make them fast!

e Finding if (and where) a ray hits an object
— Picking
- Ray tracing and global illumination

e For speed-up techniques
e Collision detection (treated in a later lecture)

Midtown Madness 3, DICE

Some basic geometrical primitives

e Ray:

e Sphere: Q

e Box

- Axis-aligned (AABB)
_ Oriented (OBB) &
e k-DOP /\\

A

N\

-
N

Four different techniques

e Analytical

e Geometrical

e Separating axis theorem (SAT)
e Dynamic tests

e Given these, one can derive many tests
quite easily

- However, often tricks are needed to make them
fast

Analytical:
Ray/sphere test

e Sphere center: ¢, and radius r
e Ray: r(f)=o+td
e Sphere formula: ||p-c||=r
e Replace p by r(7), and square it:
(r(t)-c)-(r(t)-c)-r" =0
(td+ (0 -c¢)) (td+(0—-c¢)) -7 =0
(d-d)t* +2((0-¢)-d)t+(0—-c)-(0-c)-r" =0
> +2((o-c)-d)t+(0-c¢c)-(0-¢c)-r’=0 |d]=1

Analytical, continued
> +2((0-c¢)-d)t+(0o-c)-(0-¢c)-r> =0

e Be a little smart...
(0-¢)'d>0?
(0-¢)-(0-¢)-r> <0 ?
e Such tests are called "rejection tests”
e Other shapes: RS ETs
(p,/a) +(p, /b)Y +(p./c) =1
(p,/ a)’ + (p,/ b)* - p.=0 Modificd by UIf Assarsson 2004

Geometrical:
Ray/Box Intersection

e Boxes and spheres often used as
bounding volumes

e A slab is the volume betweeW
parallell planes: /

e A box is the logical intersection of three
slabs (2 in 2D):

BOX

Geometrical:
Ray/Box Intersection (2)

e Intersect the 2 planes of each slab with

the ray
_
/

'./'I
e Keep max of ##and min of ¢
o If /"< maxthen we got an intersection

e Special case when ray parallell to slab

/7

Separating Axis Theorem (SAT)
Page 563 in book

e Two convex polyhedrons, A and B, are
disjoint if any of the following axes
separate the objects:

— An axis orthogonal to a face of A

— An axis orthogonal to a face of B

— An axis formed from the cross product of one
edge from each of A and B

—

axis

Q A and B overlaps on this axis

SAT example:
Triangle/Box

e E.g an axis-aligned box and a triangle

e 1) test the axes that are orthogonal to the
faces of the box

e Thatis, x,y, and z

v

Triangle/Box with SAT (2)

e Assume that they overlapped on x,y,z
e Must continue testing
e 2) Axis orthogonal to face of triangle

axis

Triangle seen from side

Triangle/Box with SAT (3)

e If still no separating axis has been found...
e 3) Test axis: t=e,,, X € ;.01
e Example:

- x-axis from box: e, .=(1,0,0)

- etriangle=v 1=Vo

e [est all such combinations

e If there is at least one separating axis,
then the objects do not collide

e Else they do overlap

Rules of Thumb for.
Intersection Testing

e Acceptance and rejection test
- Try them early on to make a fast exit

e Postpone expensive calculations if
possible

e Use dimension reduction

- E.g. 3 one-dimensional tests instead of one
complex 3D test, or 2D instead of 3D

e Share computations between objects if
possible

e Timing!!!

Another analytical example: Ray/
Triangle in detail

e Ray: r(¢H)=o+rd

: : : \ \%
e [riangle vertices: v,, v,, v, v, -V,
e A point in the triangle: /

1

1Yo

® t(u,v)=Votu(v,-Vy) Tv(v,- Vg)= Yo =
(1-u-v)vytuv,+vv, [u,v>=0, u+v<=I]

e Set t(u,v)=r(7), and solve!

Ray/Triangle (2)

[det(s,e;,e,)
det(-d,s,e,)
\det(—d,el,s))

1
~ det(-d,e,e,)

| | (¢ |
-d v,-v, v,=-v,|lul=[0-V,
N\ |

det(s, el ’ ez) J

1
Uul=——
det(_da €, ez)
v

det(-d,s,e,)
det(-d,e,,s)

Use this fact: det(a,b,c)=(axb)-¢=—-(axc)'b

e Share factors to speed up computations

Ray/Triangle (3)
Implementation

e Be smart!
— Compute as little as possible. Then test

e EXamples: |3

e Compute
e [hen test valid bounds

@ 1f (u<O0 or u>l) exit;

: Plane: w#:n-p+d=0
Point/Plane

e Insert a ioint x Into plane equation:

f(x)=n‘x+d=0 forx'son the plane
bl /(x)=n-x+d <0 forx'sononeside of the plane

half space

S f(X)=n-x+d >0 forx's on the other side

half space

origin

Plane: m#:n-p+d=0
Sphere/Plane Sphere: ¢ 7

AABBIPIane Box : bmin p "

e Sphere: compute

e /(c) is the signed distance (n normalized)
e abs(f(¢))>r no collision
e abs(f(¢c))=r sphere touches the plane

e abs(f(¢))<r sphere intersects plane

e Box: insert all 8 corners

e If all /'s have the same sign, then all
points are on the same side, and no
collision

Plane: w:n'p+d=0

Sphere: ¢ v
AABB/plane Box: B™ |

e The smart way (shown in 2D)

e Find diagonal that is most closely alighed
with plane normal

Need only test

the red points More details in book

Ray/Polygon: very briefly

e Intersect ray with polygon plane
e Project from 3D to 2D .
e How?

e FIind maX(|nx|,|ny|a|nz|)

e Skip that coordinate!
e Then, count crossing in 2D

Volume/Volume tests

e Used in collision detection
e Sphere/sphere

- Compute squared distance between sphere
centers, and compare to (r,+r,)?

e Axis-Aligned Bounding Box/AABB

— Testin 1D for x,y, and z

max(x,y)

e Oriented Bounding boxes ..o
- Use SAT [details in book]

View frustum testing

e View frustum is 6 planes:

e Near, far, right, left, top,
bottom

e Create planes from projection matrix
— Let all positive half spaces be outside frustum

-~ Not dealt with here --p. 773-774, 3rd ed.

e Sphere/frustum common approach:
Test sphere against 6 frustum planes

If in positive half space and r distances from plane
=> no intersection

If intersecting plane or in negative half space, continue

If not outside after all six planes, then inside or
iIntersecting

e Example follows...

View frustum testing example

_—

outside
frustum

—

Intersecting
frustum
J \

e Not exact test, but not incorrect
- A sphere that is reported to be inside, can be outside
— Not vice versa

e Similarly for boxes

Dynamic Intersection Testing
[In book: 620-628]

e Testing is often done every rendered
frame, i.e., at discrete time intervals

e Therefore, you can get "quantum effects”

~1 _ 1=

Frame n Frame n+1/

e Dynamic testing deals with this
e IS more expensive

e Deals with a time interval: time between
two frames

Dynamic intersection testing
Sphere/Plane

s. & s, are signed distances

e No collision occur: RCEA.
- If they are on the same side of the plane (s_.s,>0)

- Plus |s_[>r and |s |>r
e Otherwise, sphere can move |s |-~

S —=r

C

S =S

e Time of collision: ksl

e Response: reflect v around n, and move
(1-z,)r (r=refl vector)

BONUS

Dynamic Separating Axis Theorem
e SAT: tests one axis at a time for overlap

e Same with DSAT, but:

- Need to adjust the projection on the axis so that
the interval moves on the axis as well

e Need to test same axes as with SAT

e Same criteria for overlap/disjoint:
— If no overlap on axis => disjoint

_ If overlap on all axes => objects overlap

BONUS
Dynamic Sweep-and-Prune

e http://graphics.idav.ucdavis.edu/~dcoming/papers/coming_staadt vriphys05.pdf

Exercises

e Create a function (by writing code on
paper) that tests for intersection between:
- two spheres
— aray and a sphere
- view frustum and a sphere

Scan Line Fill

Ay b ______ A

A

Set active edges to AB and AC
Fory=A.y, Ay-1,...Cly
If y=B.y — exchange AB with BC 5y |

Compute xstart and xend.
Interpolate color, depth, texcoords
etc for points (xstart,y) and Cy

(xend,y) xstart xend
For x = xstart, xstart+1,xend

Compute color, depth etc for
(X,y) using interpolation. This is the modern
way to rasterize a
triangle

Using Interpolation

C, C, C; specified by glColor or by vertex shading
C, determined by interpolating between C, and C,
C; determined by interpolating between C, and C;
interpolate between C, and C,along span

scan line

Rasterizing a Tria

—Convex Polygons only

—Nonconvex polygons assumed to have been
tessellated

—Shades (colors) have been computed for
vertices (Gouraud shading)

—Combine with z-buffer algorithm
* March across scan lines interpolating shades
* Incremental work small

Flood Fill

* Fill can be done recursively if we know a seed
point located inside (WHITE)

» Scan convert edges into buffer in edge/inside

color (BLACK)
flood fill(int x, int y) {
if (read pixel(x,y)= = WHITE) {

write pixel (x,y,BLACK);
flood fill(x-1, y);
flood fill (x+1, y);
flood fill(x, y+l);
flood fill(x, y-1);

