
Tomas Akenine-Möller
Department of Computer Engineering
Chalmers University of Technology

Tomas Akenine-Mőller © 2003

  A tool needed for the graphics people all the
time…

  Very important components:
–  Need to make them fast!

  Finding if (and where) a ray hits an object
–  Picking
–  Ray tracing and global illumination

  For speed-up techniques
  Collision detection (treated in a later lecture)

Tomas Akenine-Mőller © 2003

Midtown Madness 3, DICE

Tomas Akenine-Mőller © 2003

 Ray:
 Sphere:
 Box

–  Axis-aligned (AABB)
–  Oriented (OBB)

  k-DOP

Tomas Akenine-Mőller © 2003

 Analytical
 Geometrical
 Separating axis theorem (SAT)
 Dynamic tests

 Given these, one can derive many tests
quite easily
–  However, often tricks are needed to make them

fast

Tomas Akenine-Mőller © 2003

 Sphere center: c, and radius r
 Ray: r(t)=o+td
 Sphere formula: ||p-c||=r
 Replace p by r(t), and square it:

o

d

c
r

€

(td+ (o − c))⋅ (td+ (o − c)) − r2 = 0

Tomas Akenine-Mőller © 2003

 Be a little smart…

c

o
d

 Such tests are called ”rejection tests”
 Other shapes:

Modified by Ulf Assarsson 2004

Tomas Akenine-Mőller © 2003

 Boxes and spheres often used as
bounding volumes

 A slab is the volume between two
parallell planes:

 A box is the logical intersection of three
slabs (2 in 2D):

BOX

Tomas Akenine-Mőller © 2003

  Intersect the 2 planes of each slab with
the ray

 Keep max of tmin and min of tmax

  If tmin < tmax then we got an intersection
 Special case when ray parallell to slab

Tomas Akenine-Mőller © 2003

 Two convex polyhedrons, A and B, are
disjoint if any of the following axes
separate the objects:
–  An axis orthogonal to a face of A
–  An axis orthogonal to a face of B
–  An axis formed from the cross product of one

edge from each of A and B

A and B overlaps on this axis

axis

Tomas Akenine-Mőller © 2003

 E.g an axis-aligned box and a triangle
  1) test the axes that are orthogonal to the

faces of the box
 That is, x,y, and z

Tomas Akenine-Mőller © 2003

 Assume that they overlapped on x,y,z
 Must continue testing
  2) Axis orthogonal to face of triangle

Triangle seen from side

axis

Tomas Akenine-Mőller © 2003

  If still no separating axis has been found…
  3) Test axis: t=ebox x etriangle
 Example:

–  x-axis from box: ebox=(1,0,0)
–  etriangle=v1-v0

 Test all such combinations
  If there is at least one separating axis,

then the objects do not collide
 Else they do overlap

Tomas Akenine-Mőller © 2003

 Acceptance and rejection test
–  Try them early on to make a fast exit

 Postpone expensive calculations if
possible

 Use dimension reduction
–  E.g. 3 one-dimensional tests instead of one

complex 3D test, or 2D instead of 3D
 Share computations between objects if

possible
 Timing!!!

Tomas Akenine-Mőller © 2003

 Ray: r(t)=o+td
 Triangle vertices: v0, v1, v2
 A point in the triangle:
  t(u,v)=v0+u(v1 - v0) +v(v2 - v0)= =

(1-u-v)v0+uv1+vv2 [u,v>=0, u+v<=1]

 Set t(u,v)=r(t), and solve!

v2

v1

v0

v1 -v0

v2 -v0

Tomas Akenine-Mőller © 2003

 Solve with Cramer’s rule:

€

| | |
−d e1 e2
| | |

⎛

⎝

⎜
⎜ ⎜

⎞

⎠

⎟
⎟ ⎟

t
u
v

⎛

⎝

⎜
⎜ ⎜

⎞

⎠

⎟
⎟ ⎟

=

|
s
|

⎛

⎝

⎜
⎜ ⎜

⎞

⎠

⎟
⎟ ⎟ A x = b

Tomas Akenine-Mőller © 2003

 Solve with Cramer’s rule:

 Share factors to speed up computations

€

| | |
−d e1 e2
| | |

⎛

⎝

⎜
⎜ ⎜

⎞

⎠

⎟
⎟ ⎟

t
u
v

⎛

⎝

⎜
⎜ ⎜

⎞

⎠

⎟
⎟ ⎟

=

|
s
|

⎛

⎝

⎜
⎜ ⎜

⎞

⎠

⎟
⎟ ⎟

Tomas Akenine-Mőller © 2003

 Be smart!
–  Compute as little as possible. Then test

 Examples:

 Compute
 Then test valid bounds
 if (u<0 or u>1) exit;

Tomas Akenine-Mőller © 2003

  Insert a point x into plane equation:

origin

Positive
half space

Negative
half space

Tomas Akenine-Mőller © 2003

 Sphere: compute
  f (c) is the signed distance (n normalized)

 Box: insert all 8 corners
  If all f ’s have the same sign, then all

points are on the same side, and no
collision

  abs(f (c)) > r no collision
  abs(f (c)) = r sphere touches the plane
  abs(f (c)) < r sphere intersects plane

Tomas Akenine-Mőller © 2003

 The smart way (shown in 2D)
 Find diagonal that is most closely aligned

with plane normal

More details in book
Need only test
the red points

Tomas Akenine-Mőller © 2003

  Intersect ray with polygon plane
 Project from 3D to 2D
 How?
 Find max(|nx|,|ny|,|nz|)
 Skip that coordinate!
 Then, count crossing in 2D

Tomas Akenine-Mőller © 2003

 Used in collision detection
 Sphere/sphere

–  Compute squared distance between sphere
centers, and compare to (r1+r2)2

 Axis-Aligned Bounding Box/AABB
–  Test in 1D for x,y, and z

  Oriented Bounding boxes
–  Use SAT [details in book]

max(x,y)

min(x,y)

max(x,y)

min(x,y)

Tomas Akenine-Mőller © 2003

  View frustum is 6 planes:
  Near, far, right, left, top,

bottom
  Create planes from projection matrix

–  Let all positive half spaces be outside frustum
–  Not dealt with here -- p. 773-774, 3rd ed.

  Sphere/frustum common approach:
–  Test sphere against 6 frustum planes
–  If in positive half space and r distances from plane

=> no intersection
–  If intersecting plane or in negative half space, continue
–  If not outside after all six planes, then inside or

intersecting
  Example follows…

Tomas Akenine-Mőller © 2003

  Not exact test, but not incorrect
–  A sphere that is reported to be inside, can be outside
–  Not vice versa

  Similarly for boxes

outside
frustum

intersecting
frustum

Tomas Akenine-Mőller © 2003

 Testing is often done every rendered
frame, i.e., at discrete time intervals

 Therefore, you can get ”quantum effects”

Frame n Frame n+1

 Dynamic testing deals with this
  Is more expensive
 Deals with a time interval: time between

two frames

Tomas Akenine-Mőller © 2003

 No collision occur:
–  If they are on the same side of the plane (scse>0)
–  Plus |sc|>r and |se|>r

 Otherwise, sphere can move |sc|-r
 Time of collision:

e

r
sc

se

sc & se are signed distances t=n

t=n+1

 Response: reflect v around n, and move
(1-tcd)r (r=refl vector)

r
v c

n

Tomas Akenine-Mőller © 2003

 SAT: tests one axis at a time for overlap

 Same with DSAT, but:
–  Need to adjust the projection on the axis so that

the interval moves on the axis as well
 Need to test same axes as with SAT
 Same criteria for overlap/disjoint:

–  If no overlap on axis => disjoint

–  If overlap on all axes => objects overlap

Tomas Akenine-Mőller © 2003

  http://graphics.idav.ucdavis.edu/~dcoming/papers/coming_staadt_vriphys05.pdf

Exercises
l Create a function (by writing code on

paper) that tests for intersection between:
–  two spheres
–  a ray and a sphere
–  view frustum and a sphere

Tomas Akenine-Mőller © 2003

Scan Line Fill
Set active edges to AB and AC
For y = A.y, A.y-1,...,C.y

 If y=B.y → exchange AB with BC
 Compute xstart and xend.
Interpolate color, depth, texcoords
etc for points (xstart,y) and
(xend,y)
 For x = xstart, xstart+1, ...,xend
 Compute color, depth etc for

 (x,y) using interpolation.

xend

This is the modern
way to rasterize a
triangle

Using Interpolation

span

C1

C3

C2

C5

C4
scan line

C1 C2 C3 specified by glColor or by vertex shading
C4 determined by interpolating between C1 and C2
C5 determined by interpolating between C2 and C3
interpolate between C4 and C5 along span

Rasterizing a Triangle

– Convex Polygons only
– Nonconvex polygons assumed to have been
tessellated

– Shades (colors) have been computed for
vertices (Gouraud shading)

– Combine with z-buffer algorithm
• March across scan lines interpolating shades
• Incremental work small

Flood Fill

• Fill can be done recursively if we know a seed
point located inside (WHITE)

• Scan convert edges into buffer in edge/inside
color (BLACK)
flood_fill(int x, int y) {
 if(read_pixel(x,y)= = WHITE) {
 write_pixel(x,y,BLACK);
 flood_fill(x-1, y);
 flood_fill(x+1, y);
 flood_fill(x, y+1);
 flood_fill(x, y-1);
} }

