
Ulf Assarsson
Department of Computer Engineering
Chalmers University of Technology

Lecture 1: Real-time Rendering
The Graphics Rendering Pipeline

•  Three conceptual stages of the pipeline:
–  Application (executed on the CPU)

•  collision detection, speed-up techniques, animation
–  Geometry

•  Compute lighting at vertices of triangle
•  Project onto screen (3D to 2D)

–  Rasterizer
•  Texturing
•  Interpolation over triangle
•  Z-buffering

Application Geometry Rasterizer

3D
scene input

Image

output

GEOMETRY - Summary
Application Geometry Rasterizer

model space world space world space

compute lighting

camera space

projection
image space

clip map to screen

Ulf Assarsson © 2004

 Homogeneous notation
 Projections
 Quaternions

–  Know what they are good for. Not knowing the
mathematical rules.

€

Use : N = M−1()
T

 instead of M

  Cannot use same matrix to transform normals

  …represents a rotation of 2φ radians 2φ r
around axis uq of point p

Tomas Akenine-Mőller © 2002

 A point:
 Translation becomes:

 A vector (direction):
 Translation of vector:
 Also allows for projections (later)

Translationsdelen

rotations-
delen

02. Vectors and Transforms

Change of Frames
• Mmodel-to-world:

(0,5,0)

E.g.: pworld = Mm→w pmodel = Mm→w (0,5,0)T = 5 b (+ o)

b

x

y

z

a

c

o

world space

model space

02. Vectors and Transforms

Tomas Akenine-Mőller © 2002

 Orthogonal (parallel) and Perspective

02. Vectors and Transforms

Tomas Akenine-Mőller © 2002

 Simple, just skip one coordinate
–  Say, we’re looking along the z-axis
–  Then drop z, and render

z z

02. Vectors and Transforms

DDA Algorithm

• Digital Differential Analyzer
– DDA was a mechanical device for numerical
solution of differential equations

– Line y=kx+ m satisfies differential equation
 dy/dx = k = Δy/Δx = y2-y1/x2-x1

• Along scan line Δx = 1
y=y1;
For(x=x1; x<=x2,ix++) {
 write_pixel(x, round(y),
line_color)
 y+=k;
}

02. Rasterization, Depth Sorting and Culling:

Using Symmetry

• Use for 1 ≥ k ≥ 0
• For k > 1, swap role of x and y

– For each y, plot closest x

02. Rasterization, Depth Sorting and Culling:

•  The problem with DDA is that it uses floats
which was slow in the old days

•  Bresenhams algorithm only uses integers

You do not need to know Bresenham’s algorithm
by heart. It is enough that you understand it if
you see it.

Very Important!

02. Rasterization, Depth Sorting and Culling:

Painter’s Algorithm
• Render polygons a back to front order so that polygons

behind others are simply painted over

B behind A as seen by viewer Fill B then A

• Requires ordering of polygons
first

– O(n log n) calculation for ordering
– Not every polygon is either in
front or behind all other polygons

I.e., : Sort all triangles and
render them back-to-front.

Said on the lecture:

z-Buffer Algorithm

• Use a buffer called the z or depth buffer to store
the depth of the closest object at each pixel found
so far

• As we render each polygon, compare the depth
of each pixel to depth in z buffer

• If less, place shade of pixel in color buffer and
update z buffer

Said on the lecture:

Ulf Assarsson © 2004

+ +

=

Know how to compute components.
Also, Blinns and Phongs highlight model

Lecture 3 : Shading

Material:
• Ambient (r,g,b,a)

• Diffuse (r,g,b,a)

• Specular (r,g,b,a)

• Emission (r,g,b,a) =”självlysande färg”

Light:
• Ambient (r,g,b,a)

• Diffuse (r,g,b,a)

• Specular (r,g,b,a)

DIFFUSE Base color
SPECULAR Highlight Color
AMBIENT Low-light Color
EMISSION Glow Color
SHININESS Surface Smoothness

Tomas Akenine-Mőller © 2002

03. Shading:

I.e.:
i=iamb+idiff+ispec+iemission

€

ispec =max(0,(h⋅ n))mshimspec ⊗ sspec

Phong’s reflection model:

Blinn’s reflection model:

€

ispec =max(0,(r⋅ v))mshimspec ⊗ sspec
zero if nl <0

Tomas Akenine-Mőller © 2002

  i=iamb+idiff+ispec+iemission

 Diffuse is Lambert’s law:
 Photons are scattered equally in all

directions

03. Shading:

Tomas Akenine-Mőller © 2002

 Diffuse is dull (left)
 Specular: simulates a highlight

03. Shading:

Tomas Akenine-Mőller © 2002

 Phong specular highlight model
 Reflect l around n:

n

l r

-l

€

ispec =max(0,(r⋅ v))mshimspec ⊗ sspec
 Next: Blinns highlight formula: (n.h)m

03. Shading:

Halfway Vector

Blinn proposed replacing v·r by n·h where
h = (l+v)/|l + v|
(l+v)/2 is halfway between l and v
If n, l, and v are coplanar:
   ψ = φ/2	

Must then adjust exponent
so that (n·h)e’ ≈ (r·v)e

(e’ ≈ 4e)

03. Shading:

€

ispec =max(0,(h⋅ n))mshimspec ⊗ sspec

Tomas Akenine-Mőller © 2002

03. Shading:

Flat Gouraud Phong

Tomas Akenine-Mőller © 2002

 Transparency
–  Very simple in real-time contexts

 The tool: alpha blending (mix two colors)
 Alpha (α) is another component in the

frame buffer, or on triangle
–  Represents the opacity
–  1.0 is totally opaque
–  0.0 is totally transparent

 The blend operator:

Rendered object

03. Shading:

Color already in
the frame buffer at the
corresponding position

Tomas Akenine-Mőller © 2002

03. Shading:

Ulf Assarsson © 2004

 When does it occur?
–  In 1) pixels, 2) time, 3) texturing
–  Nyquist

 Filters
 Supersampling schemes
  Jittered sampling

04. Texturing

Most important:
•  Texturing, environment mapping
•  Bump mapping
•  3D-textures,
•  Particle systems
•  Sprites and billboards

Ulf Assarsson © 2004

FILTERING:
  For magnification: Nearest or Linear (box vs Tent

filter)

  For minification:
–  Bilinear – using mipmapping
–  Trilinear – using mipmapping
–  Anisotropic – up to 16 mipmap lookups along line of anisotropy

Ulf Assarsson © 2004

Minification

Magnification

Ulf Assarsson © 2004

Tomas Akenine-Mőller © 2002

  Image pyramid
 Half width and

height when going
upwards

 Average over 4 ”parent texels” to form
”child texel”

 Depending on amount of minification,
determine which image to fetch from

 Compute d first, gives two images
–  Bilinear interpolation in each

u

v

d

Tomas Akenine-Mőller © 2002

  Interpolate between those bilinear values
–  Gives trilinear interpolation

 Constant time filtering: 8 texel accesses

v
u

d

Level n+1

Level n

(u0,v0,d0)

Tomas Akenine-Mőller © 2002

 Not twice the number of bytes…!

1/4
1/16

1/1

1/64

Modified by Ulf Assarsson 2004
 Rather 33% more – not that much

Ulf Assarsson © 2004

Tomas Akenine-Mőller © 2002

  Assumes the environment is infinitely far away
  Sphere mapping
  Cube mapping is the norm nowadays

–  Advantages: no singularities as in sphere map
–  Much less distortion
–  Gives better result
–  Not dependent on a view position

Modified by Ulf Assarsson 2004

Tomas Akenine-Mőller © 2002

x

y

z

  Simple math: compute reflection vector, r
  Largest abs-value of component, determines which

cube face.
–  Example: r=(5,-1,2) gives POS_X face

  Divide r by abs(5) gives (u,v)=(-1/5,2/5)
  If your hardware has this feature, then it does all the

work

n eye

Tomas Akenine-Mőller © 2002

  by Blinn in 1978
  Inexpensive way of simulating wrinkles

and bumps on geometry
–  Too expensive to model these geometrically

  Instead let a texture modify the normal at
each pixel, and then use this normal to
compute lighting per pixel

geometry Bump map
Stores heights: can derive normals

+
Bump mapped geometry

=

Tomas Akenine-Mőller © 2002

  3D textures:
–  Feasible on modern hardware as well
–  Texture filtering is no longer trilinear
–  Rather quadlinear (linear interpolation 4 times)
–  Enables new possibilities

  Can store light in a room, for example

Sprites
GLbyte M[64]=!
{ !127,0,0,127, 127,0,0,127,

127,0,0,127, 127,0,0,127,!
!0,127,0,0, 0,127,0,127,
0,127,0,127, 0,127,0,0,!

!0,0,127,0, 0,0,127,127,
0,0,127,127, 0,0,127,0,!

!127,127,0,0, 127,127,0,127,
127,127,0,127, 127,127,0,0};!

void display(void) {!
!glClearColor(0.0,1.0,1.0,1.0);!
!glClear(GL_COLOR_BUFFER_BIT);!
!glEnable (GL_BLEND);!
!glBlendFunc (GL_SRC_ALPHA,

!GL_ONE_MINUS_SRC_ALPHA);!
!glRasterPos2d(xpos1,ypos1);!
!glPixelZoom(8.0,8.0);!
!glDrawPixels(width,height,!
! !GL_RGBA,!GL_BYTE, M);!

!glPixelZoom(1.0,1.0);!
!glutSwapBuffers();!

}!

Sprites (=älvor) was a technique
on older home computers, e.g.
VIC64. As opposed to billboards
sprites does not use the frame
buffer. They are rasterized
directly to the screen using a
special chip. (A special bit-
register also marked colliding
sprites.)

05. Texturing:
Just know what “sprites” is
(i.e., similar to a billboard)

Billboards
•  2D images used

in 3D
environments
– Common for

trees,
explosions,
clouds, lens
flares

•  Rotate them towards viewer
–  Either by rotation matrix or
–  by orthographic projection

Billboards

•  Fix correct transparency by
blending AND using alpha-
test

–  In fragment shader:
if (color.a < 0.1) discard;

Billboards
 Color Buffer Depth Buffer

With
blending

With
alpha test

If alpha value in texture
is lower than this
threshold value, the pixel
is not rendered to. I.e.,
neither frame buffer nor
z-buffer is updated,
which is what we want to
achieve.
E.g. here: so that objects behind show through the hole

(Also called Impostors)

axial billboarding
The rotation axis is fixed and
disregarding the view position

n

Ulf Assarsson © 2004

 Uses OpenGL (or DirectX)
–  Will not ask about syntax. Know how to use.
–  E.g. how to achieve

  Transparency
  Fog(start, stop, linear/exp/exp-squared)
  Specify a material, a triangle, how to translate or rotate an

object.

Ulf Assarsson © 2003 43

 All geometric primitives are specified by
vertices

Ulf Assarsson © 2003 44

Stack depth: 32 Stack depth: 2

modelViewMatrix = lookAt(viewpos[X],viewpos
[Y],viewpos[Z], viewat[X], viewat[Y], viewat[Z],

 viewup[X], viewup[Y], viewup[Z]);

projectionMatrix =

perspectiveMatrix(45.0,WinWidth/mWinHeight,
 0.2,1000); glViewPort(0,0,800,600);

Ulf Assarsson © 2003 45

  Uses the active texture as an environment map
VERTEX SHADER
in vec3 vertex;
in vec3 normalIn; // The normal
out vec3 normal;
out vec3 eyeVector;
uniform mat4 normalMatrix;
uniform mat4 modelViewMatrix;
uniform mat4 modelViewProjectionMatrix;

void main()
{
 gl_Position = modelViewProjectionMatrix *vec4(vertex,1);
 normal = (normalMatrix * vec4(normalIn,0.0)).xyz;
 eyeVector = (modelViewMatrix * vec4(vertex, 1)).xyz;
}

FRAGMENT SHADER
in vec3 normal;
in vec3 eyeVector;
uniform samplerCube tex1;
out vec4 fragmentColor;

void main()
{
vec3 reflectionVector = normalize(reflect(normalize(eyeVector),
normalize(normal)));
fragmentColor = texture(tex1, reflectionVector);
}

I.e.:
Compute vertex screen position as usual
Output the eye-space normal to the fragment shader
Output the view vector (vertex-to-eye) in eye space to the fragment shader

I.e.:
Compute reflection vector

Do a texture lookup in the cube map

Ulf Assarsson © 2003 46

  Frame buffer
–  Back/front/left/right – glDrawBuffers()

  Depth buffer (z-buffer)
–  For correct depth sorting
–  Instead of BSP-algorithm, painters algorithm…
–  glDepthFunc(), glDepthMask

  Stencil buffer
–  Shadow volumes,
–  glStencilFunc(), glStencilMask, glStencilMaskSeparate,

glStencilOp
  General commands:

–  glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT |
GL_STENCIL_BUFFER_BIT)

–  Specify clearing value:, glClearStencil(), glClearColor()

Ulf Assarsson © 2004

  4 techniques to compute intersections:
–  Analytically
–  Geometrically – e.g. ray vs box (3 slabs)
–  SAT (Separating Axis Theorem)

Test:
1.  axes orthogonal to side of A,
2.  axes orthogonal to side of B
3.  crossprod of edges of A and B

–  Dynamic tests – know what it means.

  E.g., describe an algorithm for intersection
between a ray and a
–  polygon or sphere or plane.

  Know equations for ray, sphere, cylinder,
plane

Tomas Akenine-Mőller © 2003

  Ray: r(t)=o+td
  Plane formula: n•p + d = 0

  Replace p by r(t) and solve for t:
 n•(o+td) + d = 0
 n•o+tn•d + d = 0
 t = (-d -n•o) / (n•d)

o d n

Here, one scalar equation
and one unknown -> just
solve for t.

Tomas Akenine-Mőller © 2003

  Sphere center: c, and radius r
  Ray: r(t)=o+td
  Sphere formula: ||p-c||=r
  Replace p by r(t): ||r(t)-c||=r

o

d

c
r

This is a standard quadratic equation. Solve for t.

Tomas Akenine-Mőller © 2003

  Intersect the 2 planes of each slab with
the ray

 Keep max of tmin and min of tmax

  If tmin < tmax then we got an intersection
 Special case when ray parallell to slab

Tomas Akenine-Mőller © 2003

  Insert a point x into plane equation:

origin

Positive
half space

Negative
half space

Tomas Akenine-Mőller © 2003

 Sphere: compute
  f (c) is the signed distance (n normalized)

 Box: insert all 8 corners
  If all f ’s have the same sign, then all

points are on the same side, and no
collision

  abs(f (c)) > r no collision
  abs(f (c)) = r sphere touches the plane
  abs(f (c)) < r sphere intersects plane

Tomas Akenine-Mőller © 2003

 Ray: r(t)=o+td
 Triangle vertices: v0, v1, v2
 A point in the triangle:
  t(u,v)=v0+u(v1 - v0) +v(v2 - v0)= =

(1-u-v)v0+uv1+vv2 [u,v>=0, u+v<=1]

 Set t(u,v)=r(t), and solve!

v2

v1

v0

v1 -v0

v2 -v0

Tomas Akenine-Mőller © 2003

  Intersect ray with polygon plane
 Project from 3D to 2D
 How?
 Find max(|nx|,|ny|,|nz|)
 Skip that coordinate!
 Then, count crossing in 2D

Tomas Akenine-Mőller © 2003

  Algo:
–  if sphere is outside any of the 6 frustum planes -> report ”outside”.
–  Else report intersect.

  Not exact test, but not incorrect
–  A sphere that is reported to be inside, can be outside
–  Not vice versa, so test is conservative

outside
frustum

intersecting
frustum

Ulf Assarsson © 2004

  Speed-up techniques
–  Culling

  Backface
  View frustum (hierarchical)
  Portal
  Occlusion Culling
  Detail

–  Levels-of-detail:

 How to construct and use the spatial data
structures

  BVH, BSP-trees (polygon aligned + axis aligned)

Tomas Akenine-Mőller © 2002

 Assume we click on screen, and want to
find which object we clicked on

click!
1)  Test the root first
2)  Descend recursively as needed
3)  Terminate traversal when possible
In general: get O(log n) instead of O(n)

Tomas Akenine-Mőller © 2002

  Find minimal box, then split along longest axis

x is longest Find minimal
boxes

Split along
longest axis

Find minimal
boxes

Called TOP-DOWN method
More complex for other BVs

AABB = Axis Aligned
 Bounding Box

BVH = Bounding Volume
 Hierarchy

Tomas Akenine-Mőller © 2002

  Test the planes against the point of view
  Test recursively from root
  Continue on the ”hither” side to sort front to

back

eye

0

1a

A B

1b

C 2

D E

1

1a 1b

2

0

2 3
4 5

  Works in the same way for polygon-
aligned BSP trees --- but that gives
exact sorting

Tomas Akenine-Mőller © 2002

 Allows exact sorting
 Very similar to axis-aligned BSP tree

–  But the splitting plane are now located in the
planes of the triangles

Know how to build it
and how to traverse
back-to-front or
front-to-back

Tomas Akenine-Mőller © 2002

  BVH is the data structure that is used most often
–  Simple to understand
–  Simple code

  However, BVH stores just geometry
–  Rendering is more than geometry

  The scene graph is an extended BVH with:
–  Lights
–  Textures
–  Transforms
–  And more

A Scene Graph is a hierarchical scene description

  3 types of algorithms:
–  With rays

  Fast but not exact

–  With BVH
  You should be able to write pseudo code for BVH/BVH

test for coll det between two objects.
  Slower but exact

–  For many many objects.
  why? Course pruning of ”obviously” non-colliding

objects
  Sweep-and-prune

