
 Department of Computer Engineering	

Graphics Hardware

Ulf Assarsson

2

Graphics hardware – why?
l  About 100x faster!
l  Another reason: about 100x faster!
l  Simple to pipeline and parallelize

l  Current hardware based on triangle rasterization
with programmable shading (e.g., OpenGL
acceleration)

l  Ray tracing: there are research architetures, and
few commercial products
–  Renderdrive, RPU, (Gelato), NVIDIA OptiX

3

4

Perspective-correct texturing
l  How is texture coordinates interpolated over a triangle?
l  Linearly?

Linear interpolation Perspective-correct interpolation
l  Perspective-correct interpolation gives foreshortening effect!
l  Hardware does this for you, but you need to understand this

anyway!

5

6

Recall the following

l Before projection, v, and after p (p=Mv)
l After projection pw is not 1!
l Homogenization: (px /pw , py /pw , pz /pw , 1)
l Gives (px´, py ´ , pz´ , 1)

7

Texture coordinate interpolation
l  Linear interpolation does not work
l  Rational linear interpolation does:

–  u(x)=(ax+b) / (cx+d) (along a scanline where y=constant)
–  a,b,c,d are computed from triangle’s vertices (x,y,z,w,u,v)

l  Not really efficient
l  Smarter:

–  Compute (u/w,v/w,1/w) per vertex
–  These quantities can be linearly interpolated!
–  Then at each pixel, compute 1/(1/w)=w
–  And obtain: (w*u/w,w*v/w)=(u,v)
–  The (u,v) are perspectively-correct interpolated

l  Need to interpolate shading this way too
–  Though, not as annoying as textures

l  Since linear interpolation now is OK, compute, e.g., Δ(u/w)/
Δx, and use this to update u/w when stepping in the x-
direction (similarly for other parameters)

8

Put differently:
l  Linear interpolation in screen space does not work

for u,v
l  Solution:

–  We have applied a non-linear transform to each vertex
 (x/w, y/w, z/w).

l  Non-linear due to 1/w – factor from the homogenisation
–  We must apply the same non-linear transform to u,v

l  E.g. (u/w, v/w). This can now be correctly screenspace interpolated since
 it follows the same non-linear (1/w) transform and then interpolation as (x/w, y/w,
z/w)

l  When doing the texture lookups, we still need (u,v) and not (u/w, v/w).
l  So, multiply by w. But we don’t have w at the pixel.
l  So, linearly interpolate (u/w, v/w, 1/w), which is computed in screenspace at each

vertex.
l  Then at each pixel:

–  u = (u/w) / (1/w)
–  v = (v/w) / (1/w)

For a formal proof, see Jim Blinn,”W Pleasure, W Fun”, IEEE Computer
Graphics and Applications, p78-82, May/June 1998

Need to interpolate shading this way too, though, not as annoying as textures

9

Background:
Graphics hardware architectures
l Evolution of graphics hardware has started

from the end of the pipeline
–  Rasterizer was put into hardware first (most

performance to gain from this)
–  Then the geometry stage
–  Application will not be put into hardware (?)

l Two major ways of getting better
performance:
–  Pipelining
–  Parallellization
–  Combinations of these are often used

 Department of Computer Engineering	

Application

PCI-E x16

Vertex
shader	

Vertex
shader	

Vertex
shader	
…

Primitive assembly	

Clipping	

Fragment Generation	

Fragment
shader	

Fragment
shader	

Fragment
shader	
…

Fragment
Merge	

Fragment
Merge	

Fragment
Merge	

…

Geo
shader	

Geo
shader	

Geo
shader	

On NVIDIA
8000/9000/200/
400/500-series:
Vertex-, Geometry-
and Fragment
shaders allocated
from a pool of
128/240/480/512
processors

 Department of Computer Engineering	

Beyond Programmable Shading 12

Graphics Processing Unit - GPU

§ NVIDIA Geforce GTX 580

1.5 GB RAM Memory

GPU

 Department of Computer Engineering	

Fermi (GF100)	

14

Graphics Hardware History
l  80’s:

–  linear interpolation of color over a scanline
–  Vector graphics

l  91’ Super Nintendo, Neo Geo,
–  Rasterization of 1 single 3D rectangle per frame (FZero)

l  95-96’: Playstation 1, 3dfx Voodoo 1
–  Rasterization of whole triangles (Voodoo 2, 1998)

l  99’ Geforce (256)
–  Transforms and Lighting (geometry stage)

l  02’ 3DLabs WildCat Viper, P10
–  Pixel shaders, integers,

l  02’ ATI Radion 9700, GeforceFX
–  Vertex shaders and Pixel shaders with floats

l  06’ Geforce 8800
–  Geometry shaders, integers and floats, logical operations

l  10’ NVIDIA's Fermi / Intel's Larrabee
–  More general multiprocessor systems, ~16-24 proc à 16 SIMD, L1/L2 cache

Direct View Storage Tube

• Created by Tektronix
– Did not require constant refresh
– Standard interface to computers

•  Allowed for standard software
•  Plot3D in Fortran

– Relatively inexpensive
•  Opened door to use of computer

graphics for CAD community

Tektronix 4014

16

Briefly about Graphics HW pipelining

l  In GeForce3: 600-800 pipeline stages!
–  57 million transistors
–  First Pentium IV: 20 stages, 42 million transistors,
–  Core2 Duo, 271 Mtrans, Intel Core 2 Extreme QX9770 – 820Mtrans.
–  Intel Pentium D 900, 376M trans, Intel i7 (quad): 731Mtrans, 10-core Xeon Westmere: 2.6Gtrans

l  Evolution of cards:
–  X800 – 165M transistors
–  X1800 – 320M trans, 625 MHz, 750 Mhz mem, 10Gpixels/s, 1.25G verts/s
–  GeForce 6800: 222 M transistors, 400 MHz, 400 MHz core/550 MHz mem
–  GeForce 7800: 302M trans, 13Gpix/s, 1.1Gverts/s, bw 54GB/s, 430 MHz core,mem 650MHz(1.3GHz)
–  GeForce 8800: 681M trans, 39.2Gpix/s, 10.6Gverts/s, bw:103.7 GB/s, 612 MHz core (1500 for

shaders), 1080 MHz mem (effective 2160 GHz)
–  Geforce 280 GTX: 1.4G trans, 65nm, 602/1296 MHz core, 1107(*2)MHz mem, 142GB/s, 48Gtex/s
–  ATI Radeon HD 5870: 2.15G trans, 153GB/s, 40nm, 850 MHz,GDDR5,256bit mem bus,
–  Geforce GTX480: 3Gtrans, 700/1401 MHz core, Mem (1.848G(*2)GHz), 177.4GB/s, 384bit mem bus,

40Gtexels/s
–  GXT580: 3Gtrans, 772/1544, Mem: 2004/4008 MHz, 192.4GB/s, GDDR5, 384bit mem bus,

49.4 Gtex/s

–  Lesson learned: #trans doubles ~per year. Core clock increases slowly. Mem clock –increases with
new technology DDR2, DDR3, GDDR5

2008

2006

2004
2005

2001

2004
2005

2010

2011

2007

17

Briefly about Graphics HW pipelining
l  Ghw speed doubles ~6-12 months,

CPU speed doubles ~18 months
l  Ideally: n pipeline stages à n times

throughput
–  But latency is high (may also increase)!

However, not a problem here:
l  Chip runs at about 500 MHz (2ns per clock)
l  2ns*700=1.4 µs
l  We got about 20 ms per frame (50 fps)

l  Graphics hardware is simpler to
pipeline and parallelize because:

–  Pixels are (most often) independent of
each other

–  Few branches and much fixed
functionality

–  Don’t need high clock freq: bandwidth to
memory is bottleneck

l  This is changing with increased
programmability

–  Simpler to predict memory access
pattern (do prefecthing!)

Vertex
shader

Vertex
shader

Vertex
shader …

Primitive assembly

Clipping

Fragment Generation

Fragment
shader

Fragment
shader

Fragment
shader …

Fragment
Merge

Fragment
Merge

Fragment
Merge

…

Geo
shader

Geo
shader

Geo
shader

18

Parallellism
l  ”Simple” idea: compute n results in parallel, then

combine results
l  NVIDIA GTX580: ≤ 512 pixels/clock

–  Many pixels are processed simultaneously

l  Not always simple!
–  Try to parallelize a sorting algorithm…
–  But pixels are independent of each other, so simpler for

graphics hardware

l  Can parallellize both geometry and rasterizer:

19

Example: ATI X1800

l  8 vertex shaders
l  16 pixel shaders
l SIMD rgba,xyzw

20

Taxonomy of hardware
l Need to sort from model space to screen

space
l Gives four major
 architectures:

–  Sort-first
–  Sort-middle
–  Sort-Last Fragment
–  Sort-Last Image

l Will describe these briefly, and then focus on
sort-middle and sort-last fragment (used in
commercial hardware)

21

Sort-First
l  Sorts primitives before geometry stage

–  Screen in divided into large regions
–  A separate pipeline is responsible for each

region (or many)

l  G is geometry, FG & FM is part of rasterizer
–  A fragment is all the generated information for a pixel on a

triangle
–  FG is Fragment Generation (finds which pixels are inside

triangle)
–  FM is Fragment Merge (merges the created fragments with

various buffers (Z, color))

l  Not explored much at all

Sorting/dividing work to parallel execution units.	

22

Sort-Middle
l  Sorts betwen G and R
l  Pretty natural, since after G, we know the

screen-space positions of the triangles
l  Older/cheaper hardware uses this

–  Examples include InfiniteReality (from SGI)
and the KYRO architecture (from Imagination)

l  Spread work arbitrarily among G’s
l  Then depending on screen-space position, sort to different

R’s
–  Screen can be split into ”tiles”. For example:

l  Rectangular blocks (8x8 pixels)
l  Every n scanlines

l  The R is responsible for rendering inside tile
l  A triangle can be sent to many FG’s depending on overlap

(over tiles)

23

Sort-Last Fragment
l  Sorts betwen FG and FM
l  XBOX, PS3, nVidia use this
l  Again spread work among G’s
l  The generated work is sent to FG’s
l  Then sort fragments to FM’s

–  An FM is responsible for a tile of pixels
l  A triangle is only sent to one FG, so this avoids

doing the same work twice
–  Sort-Middle: If a triangle overlaps several tiles, then the triangle

is sent to all FG’s responsible for these tiles
–  Results in extra work

24

Sort-Last Image
l  Sorts after entire pipeline
l  So each FG & FM has a separate frame

buffer for entire screen (Z and color)

l  After all primitives have been sent to the pipeline,
the z-buffers and color buffers are merged into one
color buffer

l  Can be seen as a set of independent pipelines
l  Huge memory requirements!
l  Used in research, but probably not commerically

25

Mainly due to texture reads
FILTERING:
l  For magnification: Nearest or Linear (box vs Tent filter)

l  For minification:
–  Bilinear – using mipmapping
–  Trilinear – using mipmapping
–  Anisotropic – some mipmap lookups along line of anisotropy

Memory bandwith usage is huge!!

26

Interpolation

Minification

Magnification

27

Bilinear filtering using Mipmapping

28

Anisotropic texture filtering

Wish list:

1 sample = 32 bytes (or
512 for 16x ani. filter.)

512/4(rgba) proc *
1544MHz * 32 bytes =
6.3 GB/s (101TB/s)

And we haven’t
even used float-
textures yet...

nor 3D textures…

29

l  Assume GDDR5 (read/write twice per clock) at 2.004
MHz, (256+128=384) bits per access: => 192.4 Gb/s

l  On top of that bandwith usage is never 100%, and
anti-aliasing (supersampling), will use up bandwidth
to frame buffers as well as texture mem.

l  However, there are many techniques to reduce
bandwith usage:
–  Texture caching with prefetching
–  Texture compression
–  Z-compression
–  Z-occlusion testing (HyperZ)

Memory bandwidth usage is huge!!

30

Z-occlusion testing and Z-
compression
l One way of reducing bandwidth

–  ATI Inc., pioneered with their HyperZ technology
l Very simple, and very effective
l Divide screen into tiles of 8x8 pixels
l Keep a status memory on-chip

–  Very fast access
–  Stores additional information that this algorithm uses

l Enables occlusion culling on triangle basis, z-
compression, and fast Z-clears

31

Architecture of
Z-cull and Z-
compress

l  Store zmax per tile, and a flag (whether cleared, compressed/
uncompressed)

l  Rasterize one tile at a time
l  Test if zmin on triangle is farther away than tile’s zmax

–  If so, don’t do any work for that tile!!!
–  Saves texturing and z-read for entire tile – huge savings!

l  Otherwize read compressed Z-buffer, & unpack
l  Write to unpacked Z-buffer, and when finished compress and send

back to memory, and also: update zmax
l  For fast Z-clears: just set a flag to ”clear” for each tile

–  Then we don’t need to read from Z-buffer, just send cleared Z for that tile

32

X1800 GTO
l Real example

Z-cull

Z-compress

Also note texture compress
and color compress

33

KYRO II

Added by Ulf Assarsson 2004

Bonus

34

KYRO II

Added by Ulf Assarsson 2004

Bonus

35

KYRO – a different architecture
l  Based on cost-effective PowerVR architecture
l  Tile-based

–  For KYRO II: 32x16 pixels
l  Fundamental difference

–  For entire scene, do this:
–  Find all triangles inside each tile
–  Render all triangle inside tile

l  Advantage: can implement temporary color, stencil, and Z-
buffer in fast on-chip memory

l  Saves memory and memory bandwidth!
–  Claims to save 2/3 of bandwidth compared to traditional architecture

(without Z-occlusion testing) thanks to deferred shading
l  Disadvantage: Need to store scene in local card memory. 3

MB can handle a little over 30,000 triangles

Bonus

36

KYRO: pros and cons
l  Uses a small amount of very fast memory

–  Reduces bandwidth demands greatly
–  Reduces frame buffer memory greatly

l  But more local memory is needed
–  For tile sorting
–  Amount of local memory places a limit on how many triangles

can be rendered
–  3 MB can handle a little over 30,000 triangles

Bonus

 Department of Computer Engineering	

Application

PCI-E x16

Vertex
shader	

Vertex
shader	

Vertex
shader	
…

Primitive assembly	

Clipping	

Fragment Generation	

Fragment
shader	

Fragment
shader	

Fragment
shader	
…

Fragment
Merge	

Fragment
Merge	

Fragment
Merge	

…

Geo
shader	

Geo
shader	

Geo
shader	

On NVIDIA
8000/9000/200/
400-series:
Vertex-, Geometry-
and Fragment
shaders allocated
from a pool of
128/240/480
processors

Logical layout of a graphics card:

Current	 and	 Future	 Mul-cores	 in	 Graphics	
•  Cell	 –	 2005	

–  8	 cores	 à	 4-‐float	 SIMD	 	
–  256KB	 L2	 cache/core	
–  128	 entry	 register	 file	
–  3.2	 GHz	

•  NVIDIA	 8800	 GTX	 –	 Nov	 2006	
–  16	 cores	 à	 8-‐float	 SIMD	 (GTX	 280	 -‐	 	 30	 cores	 à	 8,	 june	 ’08)	
–  16	 KB	 L1	 cache,	 64KB	 L2	 cache	 (rumour)	
–  1.2-‐1.625	 GHz	

•  Larrabee	 –	 2010	 ?	
–  16-‐24	 cores	 à	 16-‐float	 SIMD	
–  Core	 =	 16-‐float	 SIMD	 (=512bit	 FPU)	 +	 	 x86	 proc	 with	 loops,	 branches	 +	 scalar	 ops,	 4	 threads/core	
–  32KB	 L1cache,	 256KB	 L2-‐cache	
–  1.7-‐2.4	 GHz	

•  NVIDIA	 Fermi	 GF100	 -‐	 2010	
–  16	 cores	 à	 2x16-‐float	 SIMD	 (1x16	 double	 SIMD)	
–  16+48	 KB	 L1	 cache,	 768	 KB	 L2	 cache	
–  1401	 -‐	 1544	 MHz	 core	

PowerXCell 8i Processor – 2008
–  8 cores à 4-float SIMD 	

–  256KB L2 cache	

–  128 entry register file	

–  but has better double precission

support

CPU	 -‐	 2011	
Core	 1	 L1	 d$	

L1	 i$	
Core	 2	 L1	 d$	

L1	 i$	

Core	 3	 L1	 d$	
L1	 i$	

Core	 4	 L1	 d$	
L1	 i$	

L2	 shared	 $	

32 KB
32 KB

2-4 MB

L3	 shared	 $	 8-10 MB

MC	

1 – 8 cores à
4 SIMD floats
(16 SIMD for
bytes)

256bits
internal
buses

Graphics
Memory
Controller
HUB

64 bits

AVX:
Intel’s Sandybridge
AMD’s Bulldozer

FSB
Wish	 list:	
•  4-‐8	 cores	 à	 4	 floats	
⇒  128	 bytes/clock	
⇒  	 128GByte/s	
•  In	 addi-on,	 x3,	 since:	

	 r1	 =	 r2	 +	 r3;	
	

GPU-‐	 Nvidia’s	 Fermi	 2010	

768	 KB	 L2	 $	

	
RAM	 –	 GDDR5	

1-‐4	 GB,	 ~2004*2	 MHz	

	
Core	 1	

L1	 $	

	
Core	 1	

L1	 $	

	
Core	 16	

L1	 $	 16/48 KB each

16 cores à
2x16-SIMD width

Overview:

Bandwidth ~192
GB/s

Bus: 256/384
bits
Compare
ATI 2900:
 - 2x512bits
Larrabee:
 - 2x512bits

Bus

Wish:
512 ALUs à 1 float/clock => 2KB/clock
~1.5GHz core clock => 3000 GB/s request

We have ~192 GB/s. In reality we can do 20-40
instr. between each RAM–read/write.

One	 SIMD-‐
processor(NVIDIA)	

•  512	 “CUDA	
stream	 cores”	 (=	
ALUs)	

•  All	 threads	 execute	 the	
same	 program	

•  But	 each	 thread	 knows	
block	 and	 thread	 ID	
–  So	 we	 can	 branch	 on	

this	
•  Leads	 to	 efficiency	 issues	

since	 every	 thread	
performs	 same	 opera-on	

2x16
ALU
s

One SIMD
processor
Per multiprocessor:
l  8800/GTX280:

–  8 mul finishes per cycle
–  Takes 4 cycles
–  Result usable after 24

clock cycles

l  Fermi:
–  16 mul per cycle

l  Two separate warps
(=groups of 32 threads)
per 16-SIMD ALU/FPU

42

 Department of Computer Engineering	

The Future	

•  Faster	

•  More programmable	

•  More Multiprocessors	

– Maybe higher SIMD-width (more than 32
stream processors)	

•  Physics Processing Unit	

– (Havok FX uses the GPU, announced at GDC

2006)	

Ulf Assarsson © 2004

Study:
l  Perspective correct texturing
l  Taxonomy:

–  Sort first
–  sort middle
–  sort last fragment
–  sort last image

l  Bandwidth
–  Why it is a problem
–  How to ”solve” it

l  Be able to sketch the architecture of a moder graphics card

Linearly interpolate (ui/wi, vi/wi, 1/wi) in screenspace
from each triangle vertex i.
Then at each pixel:

uip = (uip/wip) / (1/wip)
vip = (vip/wip) / (1/wip)

where ip = screen-space interpolated value from the
triangle vertices.

Sort-first

Sort-middle

Sort-last
fragment
Sort-last
image

 Department of Computer Engineering	

Application

PCI-E x16

Vertex
shader	

Vertex
shader	

Vertex
shader	
…

Primitive assembly	

Clipping	

Fragment Generation	

Fragment
shader	

Fragment
shader	

Fragment
shader	
…

Fragment
Merge	

Fragment
Merge	

Fragment
Merge	

…

Geo
shader	

Geo
shader	

Geo
shader	

On NVIDIA
8000-series:
Vertex-, Geometry-
and Fragment
shaders allocated
from a pool of
currently up to 512
processors

