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Graphics hardware – why? 
l  About 100x faster! 
l  Another reason: about 100x faster! 
l  Simple to pipeline and parallelize 

l  Current  hardware based on triangle rasterization 
with programmable shading (e.g., OpenGL 
acceleration) 

l  Ray tracing: there are research architetures, and 
few commercial products 
–  Renderdrive, RPU, (Gelato), NVIDIA OptiX 
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Perspective-correct texturing 
l  How is texture coordinates interpolated over a triangle? 
l  Linearly? 

Linear interpolation Perspective-correct interpolation 
l  Perspective-correct interpolation gives foreshortening effect! 
l  Hardware does this for you, but you need to understand this 

anyway! 
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Recall the following 

l Before projection, v, and after p  (p=Mv) 
l After projection pw is not 1! 
l Homogenization: (px /pw , py /pw , pz /pw , 1) 
l Gives (px´, py ´ , pz´ , 1) 
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Texture coordinate interpolation 
l  Linear interpolation does not work 
l  Rational linear interpolation does: 

–  u(x)=(ax+b) / (cx+d)   (along a scanline where y=constant) 
–  a,b,c,d are computed from triangle’s vertices (x,y,z,w,u,v) 

l  Not really efficient 
l  Smarter: 

–  Compute (u/w,v/w,1/w) per vertex 
–  These quantities can be linearly interpolated! 
–  Then at each pixel, compute 1/(1/w)=w 
–  And obtain: (w*u/w,w*v/w)=(u,v) 
–  The (u,v) are perspectively-correct interpolated 

l  Need to interpolate shading this way too 
–  Though, not as annoying as textures 

l  Since linear interpolation now is OK, compute, e.g., Δ(u/w)/
Δx, and use this to update u/w when stepping in the x-
direction (similarly for other parameters) 
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Put differently: 
l  Linear interpolation in screen space does not work 

for u,v 
l  Solution: 

–  We have applied a non-linear transform to each vertex 
  (x/w, y/w, z/w).  

l  Non-linear due to 1/w – factor from the homogenisation 
–  We must apply the same non-linear transform to u,v 

l  E.g. (u/w, v/w). This can now be correctly screenspace interpolated since 
 it follows the same non-linear (1/w) transform and then interpolation as (x/w, y/w, 
z/w) 

l  When doing the texture lookups, we still need (u,v) and not (u/w, v/w). 
l  So, multiply by w. But we don’t have w at the pixel.  
l  So, linearly interpolate (u/w, v/w, 1/w), which is computed in screenspace at each 

vertex. 
l  Then at each pixel: 

–  u = (u/w) / (1/w) 
–  v = (v/w) / (1/w)  

For a formal proof, see Jim Blinn,”W Pleasure, W Fun”, IEEE Computer 
Graphics and Applications, p78-82, May/June 1998 

Need to interpolate shading this way too, though, not as annoying as textures 
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Background: 
Graphics hardware architectures 
l Evolution of graphics hardware has started 

from the end of the pipeline 
–  Rasterizer was put into hardware first (most 

performance to gain from this) 
–  Then the geometry stage 
–  Application will not be put into hardware (?) 

l Two major ways of getting better 
performance: 
–  Pipelining 
–  Parallellization 
–  Combinations of these are often used 
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Graphics Processing Unit - GPU 

§ NVIDIA Geforce GTX 580 

1.5 GB RAM Memory 

 
GPU 
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Graphics Hardware History 
l  80’s:  

–  linear interpolation of color over a scanline 
–  Vector graphics 

l  91’ Super Nintendo, Neo Geo, 
–  Rasterization of 1 single 3D rectangle per frame (FZero) 

l  95-96’: Playstation 1, 3dfx Voodoo 1 
–  Rasterization of whole triangles (Voodoo 2, 1998) 

l  99’ Geforce (256) 
–  Transforms and Lighting (geometry stage) 

l  02’ 3DLabs WildCat Viper, P10 
–  Pixel shaders, integers,  

l  02’ ATI Radion 9700, GeforceFX 
–  Vertex shaders and Pixel shaders with floats 

l  06’ Geforce 8800 
–  Geometry shaders, integers and floats, logical operations 

l  10’ NVIDIA's Fermi / Intel's Larrabee 
–  More general multiprocessor systems, ~16-24 proc à 16 SIMD, L1/L2 cache 

 



Direct View Storage Tube 

• Created by Tektronix 
– Did not require constant refresh 
– Standard interface to computers 

•  Allowed for standard software 
•  Plot3D in Fortran 

– Relatively inexpensive 
•  Opened door to use of computer 

graphics for CAD community 

Tektronix 4014 
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Briefly about Graphics HW pipelining 

l  In GeForce3: 600-800 pipeline stages! 
–  57 million transistors 
–  First Pentium IV: 20 stages, 42 million transistors, 
–  Core2 Duo, 271 Mtrans, Intel Core 2 Extreme QX9770 – 820Mtrans. 
–  Intel Pentium D 900, 376M trans, Intel i7 (quad): 731Mtrans, 10-core Xeon Westmere: 2.6Gtrans 

l  Evolution of cards: 
–  X800 – 165M transistors 
–  X1800 – 320M trans, 625 MHz, 750 Mhz mem, 10Gpixels/s, 1.25G verts/s 
–  GeForce 6800: 222 M transistors, 400 MHz, 400 MHz core/550 MHz mem 
–  GeForce 7800: 302M trans, 13Gpix/s, 1.1Gverts/s, bw 54GB/s, 430 MHz core,mem 650MHz(1.3GHz) 
–  GeForce 8800: 681M trans, 39.2Gpix/s, 10.6Gverts/s, bw:103.7 GB/s, 612 MHz core (1500 for 

shaders), 1080 MHz  mem (effective 2160 GHz) 
–  Geforce 280 GTX: 1.4G trans, 65nm, 602/1296 MHz core, 1107(*2)MHz mem, 142GB/s, 48Gtex/s 
–  ATI Radeon HD 5870: 2.15G trans, 153GB/s, 40nm, 850 MHz,GDDR5,256bit mem bus, 
–  Geforce GTX480: 3Gtrans, 700/1401 MHz core, Mem (1.848G(*2)GHz), 177.4GB/s, 384bit mem bus, 

40Gtexels/s 
–  GXT580: 3Gtrans, 772/1544, Mem: 2004/4008 MHz, 192.4GB/s, GDDR5,  384bit mem bus,  

49.4 Gtex/s 

–  Lesson learned: #trans doubles ~per year. Core clock increases slowly. Mem clock –increases with 
new technology DDR2, DDR3, GDDR5 

2008 

2006 

2004 
2005 

2001 

2004 
2005 

2010 

2011 

2007 
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Briefly about Graphics HW pipelining 
l  Ghw speed doubles ~6-12 months,  

CPU speed doubles ~18 months 
l  Ideally: n pipeline stages à n times 

throughput 
–  But latency is high (may also increase)! 

However, not a problem here: 
l  Chip runs at about 500 MHz (2ns per clock) 
l  2ns*700=1.4 µs 
l  We got about 20 ms per frame (50 fps) 

l  Graphics hardware is simpler to 
pipeline and parallelize because: 

–  Pixels are (most often) independent of 
each other 

–  Few branches and much fixed 
functionality 

–  Don’t need high clock freq: bandwidth to 
memory is bottleneck 

l  This is changing with increased 
programmability 

–  Simpler to predict memory access 
pattern (do prefecthing!) 
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Parallellism 
l  ”Simple” idea: compute n results in parallel, then 

combine results 
l  NVIDIA GTX580: ≤ 512 pixels/clock 

–  Many pixels are processed simultaneously 

l  Not always simple! 
–  Try to parallelize a sorting algorithm… 
–  But pixels are independent of each other, so simpler for 

graphics hardware 

l  Can parallellize both geometry and rasterizer: 
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Example: ATI X1800 

l  8 vertex shaders 
l  16 pixel shaders 
l SIMD rgba,xyzw 
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Taxonomy of hardware 
l Need to sort from model space to screen 

space 
l Gives four major  
   architectures: 

–  Sort-first 
–  Sort-middle 
–  Sort-Last Fragment 
–  Sort-Last Image 

l Will describe these briefly, and then focus on 
sort-middle and sort-last fragment (used in 
commercial hardware) 
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Sort-First 
l  Sorts primitives before geometry stage 

–  Screen in divided into large regions 
–  A separate pipeline is responsible for each 

region (or many) 

l  G is geometry, FG & FM is part of rasterizer 
–  A fragment is all the generated information for a pixel on a 

triangle 
–  FG is Fragment Generation (finds which pixels are inside 

triangle) 
–  FM is Fragment Merge (merges the created fragments with 

various buffers (Z, color)) 

l  Not explored much at all 

Sorting/dividing work to parallel execution units.	
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Sort-Middle 
l  Sorts betwen G and R 
l  Pretty natural, since after G, we know the 

screen-space positions of the triangles 
l  Older/cheaper hardware uses this 

–  Examples include InfiniteReality (from SGI)                                
and the KYRO architecture (from Imagination) 

l  Spread work arbitrarily among G’s 
l  Then depending on screen-space position, sort to different 

R’s 
–  Screen can be split into ”tiles”. For example: 

l  Rectangular blocks (8x8 pixels) 
l  Every n scanlines 

l  The R is responsible for rendering inside tile 
l  A triangle can be sent to many FG’s depending on overlap 

(over tiles) 
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Sort-Last Fragment 
l  Sorts betwen FG and FM 
l  XBOX, PS3, nVidia use this 
l  Again spread work among G’s 
l  The generated work is sent to FG’s 
l  Then sort fragments to FM’s 

–  An FM is responsible for a tile of pixels 
l  A triangle is only sent to one FG, so this avoids 

doing the same work twice 
–  Sort-Middle: If a triangle overlaps several tiles, then the triangle 

is sent to all FG’s responsible for these tiles 
–  Results in extra work 
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Sort-Last Image 
l  Sorts after entire pipeline 
l  So each FG & FM has a separate frame 

buffer for entire screen (Z and color) 

l  After all primitives have been sent to the pipeline, 
the z-buffers and color buffers are merged into one 
color buffer 

l  Can be seen as a set of independent pipelines 
l  Huge memory requirements! 
l  Used in research, but probably not commerically 
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Mainly due to texture reads 
FILTERING: 
l  For magnification: Nearest or Linear (box vs Tent filter) 

l  For minification:  
–  Bilinear – using mipmapping 
–  Trilinear – using mipmapping 
–  Anisotropic – some mipmap lookups along line of anisotropy 

Memory bandwith usage is huge!! 
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Interpolation 

Minification 

Magnification 
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Bilinear filtering using Mipmapping 
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Anisotropic texture filtering 

Wish list: 

1 sample = 32 bytes (or 
512 for  16x ani. filter.) 

512/4(rgba) proc * 
1544MHz * 32 bytes = 
6.3 GB/s (101TB/s)  

And we haven’t 
even used float-
textures yet... 

nor 3D textures…  
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l  Assume GDDR5 (read/write twice per clock) at 2.004 
MHz, (256+128=384) bits per access: => 192.4 Gb/s  

l  On top of that bandwith usage is never 100%, and 
anti-aliasing (supersampling), will use up bandwidth 
to frame buffers as well as texture mem. 

l  However, there are many techniques to reduce 
bandwith usage: 
–  Texture caching with prefetching 
–  Texture compression 
–  Z-compression 
–  Z-occlusion testing (HyperZ) 

Memory bandwidth usage is huge!! 
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Z-occlusion testing and Z-
compression 
l One way of reducing bandwidth 

–  ATI Inc., pioneered with their HyperZ technology 
l Very simple, and very effective 
l Divide screen into tiles of 8x8 pixels 
l Keep a status memory on-chip 

–  Very fast access 
–  Stores additional information that this algorithm uses 

l Enables occlusion culling on triangle basis, z-
compression, and fast Z-clears 
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Architecture of 
Z-cull and Z-
compress 

l  Store zmax per tile, and a flag (whether cleared, compressed/
uncompressed) 

l  Rasterize one tile at a time 
l  Test if zmin on triangle is farther away than tile’s zmax 

–  If so, don’t do any work for that tile!!! 
–  Saves texturing and z-read for entire tile – huge savings! 

l  Otherwize read compressed Z-buffer, & unpack 
l  Write to unpacked Z-buffer, and when finished compress and send 

back to memory, and also: update zmax 
l  For fast Z-clears: just set a flag to ”clear” for each tile 

–  Then we don’t need to read from Z-buffer, just send cleared Z for that tile 
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X1800 GTO 
l Real example 

Z-cull 

Z-compress 

Also note texture compress 
and color compress 
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KYRO II 

Added by Ulf Assarsson 2004 

Bonus 
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KYRO II 

Added by Ulf Assarsson 2004 

Bonus 
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KYRO – a different architecture 
l  Based on cost-effective PowerVR architecture 
l  Tile-based 

–  For KYRO II: 32x16 pixels 
l  Fundamental difference 

–  For entire scene, do this: 
–  Find all triangles inside each tile 
–  Render all triangle inside tile 

l  Advantage: can implement temporary color, stencil, and Z-
buffer in fast on-chip memory 

l  Saves memory and memory bandwidth! 
–  Claims to save 2/3 of bandwidth compared to traditional architecture 

(without Z-occlusion testing) thanks to deferred shading 
l  Disadvantage: Need to store scene in local card memory. 3 

MB can handle a little over 30,000 triangles 
 

Bonus 
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KYRO: pros  and cons 
l  Uses a small amount of very fast memory 

–  Reduces bandwidth demands greatly 
–  Reduces frame buffer memory greatly 

l  But more local memory is needed 
–  For tile sorting 
–  Amount of local memory places a limit on how many triangles 

can be rendered 
–  3 MB can handle a little over 30,000 triangles 

Bonus 
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Logical layout of a graphics card: 



Current	  and	  Future	  Mul-cores	  in	  Graphics	  
•  Cell	  –	  2005	  

–  8	  cores	  à	  4-‐float	  SIMD	  	  
–  256KB	  L2	  cache/core	  
–  128	  entry	  register	  file	  
–  3.2	  GHz	  

•  NVIDIA	  8800	  GTX	  –	  Nov	  2006	  
–  16	  cores	  à	  8-‐float	  SIMD	  (GTX	  280	  -‐	  	  30	  cores	  à	  8,	  june	  ’08)	  
–  16	  KB	  L1	  cache,	  64KB	  L2	  cache	  (rumour)	  
–  1.2-‐1.625	  GHz	  

•  Larrabee	  –	  2010	  ?	  
–  16-‐24	  cores	  à	  16-‐float	  SIMD	  
–  Core	  =	  16-‐float	  SIMD	  (=512bit	  FPU)	  +	  	  x86	  proc	  with	  loops,	  branches	  +	  scalar	  ops,	  4	  threads/core	  
–  32KB	  L1cache,	  256KB	  L2-‐cache	  
–  1.7-‐2.4	  GHz	  

•  NVIDIA	  Fermi	  GF100	  -‐	  2010	  
–  16	  cores	  à	  2x16-‐float	  SIMD	  (1x16	  double	  SIMD)	  
–  16+48	  KB	  L1	  cache,	  768	  KB	  L2	  cache	  
–  1401	  -‐	  1544	  MHz	  core	  

PowerXCell 8i Processor – 2008 
–  8 cores à 4-float SIMD 	

–  256KB L2 cache	

–  128 entry register file	

–  but has better double precission 

support 



CPU	  -‐	  2011	  
Core	  1	   L1	  d$	  

L1	  i$	  
Core	  2	   L1	  d$	  

L1	  i$	  

Core	  3	   L1	  d$	  
L1	  i$	  

Core	  4	   L1	  d$	  
L1	  i$	  

L2	  shared	  $	  

32 KB 
32 KB 

2-4 MB 

L3	  shared	  $	   8-10 MB 

MC	  

1 – 8 cores à 
4 SIMD floats 
(16 SIMD for 
bytes) 

256bits 
internal 
buses 

Graphics 
Memory 
Controller 
HUB 

64 bits 

AVX: 
Intel’s Sandybridge 
AMD’s Bulldozer 

FSB 
Wish	  list:	  
•  4-‐8	  cores	  à	  4	  floats	  
⇒  128	  bytes/clock	  
⇒  	  128GByte/s	  
•  In	  addi-on,	  x3,	  since:	  

	  r1	  =	  r2	  +	  r3;	  
	  



GPU-‐	  Nvidia’s	  Fermi	  2010	  

768	  KB	  L2	  $	  

	  
RAM	  –	  GDDR5	  

1-‐4	  GB,	  ~2004*2	  MHz	  

	  
Core	  1	  

L1	  $	  

	  
Core	  1	  

L1	  $	  

	  
Core	  16	  

L1	  $	   16/48 KB each 

16 cores à  
2x16-SIMD width 

Overview: 

Bandwidth ~192 
GB/s 

Bus: 256/384 
bits 
Compare  
ATI 2900:  
  -  2x512bits 
Larrabee: 
  -  2x512bits 

Bus 

Wish: 
512 ALUs à 1 float/clock => 2KB/clock 
~1.5GHz core clock => 3000 GB/s request 

We have ~192 GB/s. In reality we can do 20-40 
instr. between each RAM–read/write. 



One	  SIMD-‐
processor(NVIDIA)	  

•  512	  “CUDA	  
stream	  cores”	  (=	  
ALUs)	  

•  All	  threads	  execute	  the	  
same	  program	  

•  But	  each	  thread	  knows	  
block	  and	  thread	  ID	  
–  So	  we	  can	  branch	  on	  

this	  
•  Leads	  to	  efficiency	  issues	  

since	  every	  thread	  
performs	  same	  opera-on	  

2x16 
ALU
s 



One SIMD 
processor 
Per multiprocessor: 
l  8800/GTX280: 

–  8 mul finishes per cycle 
–  Takes 4 cycles 
–  Result usable after 24 

clock cycles 

l  Fermi: 
–  16 mul per cycle 

l  Two separate warps 
(=groups of 32 threads) 
per 16-SIMD ALU/FPU 

42 
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The Future	

•  Faster	

•  More programmable	

•  More Multiprocessors	


– Maybe higher SIMD-width (more than 32 
stream processors)	


•  Physics Processing Unit	

– (Havok FX uses the GPU, announced at GDC 

2006)	
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Study: 
l  Perspective correct texturing 
l  Taxonomy: 

–  Sort first  
–  sort middle 
–  sort last fragment 
–  sort last image 

l  Bandwidth 
–  Why it is a problem 
–  How to ”solve” it 

l  Be able to sketch the architecture  of a moder graphics card 

Linearly interpolate (ui/wi, vi/wi, 1/wi) in screenspace 
from each triangle vertex i. 
Then at each pixel: 

uip = (uip/wip) / (1/wip) 
vip = (vip/wip) / (1/wip) 
 
where ip = screen-space interpolated value from the 
triangle vertices. 

Sort-first 

Sort-middle 

Sort-last 
fragment 
Sort-last 
image 
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On NVIDIA 
8000-series: 
Vertex-, Geometry- 
and Fragment 
shaders allocated 
from a pool of 
currently up to 512 
processors 


