
1

Collision Detection

Originally created by

Tomas Akenine-Möller

Updated by Ulf Assarsson

Department of Computer Engineering

Chalmers University of Technology

Tomas Akenine-Mőller © 2002

Introduction

 Without collision detection (CD), it is practically

impossible to e.g., games, movie production

tools (e.g., Toy Story)

 Because, without CD, we’ll get ”quantum

effects” all the time
– Objects will pass/slide through other objects

 So, CD is a way of increasing the level of

realism

 Not a pure CG algorithm, but extremely

important
– And we have many building blocks in place already

(spatial data structures, intersection testing)

Tomas Akenine-Mőller © 2002

What we’ll treat today

 Three techniques:

 1) Using ray tracing
– Very simple

– Not accurate

– Very fast

– Sometimes sufficient

 2) Using bounding volume hierarchies
– More complicated

– More accurate

– Slower

– Can compute exact results

 3) Efficient CD for several hundreds of objects

Tomas Akenine-Mőller © 2002

In general

 Three major parts
– Collision detection

– Collision determination

– Collision response

 We’ll deal with the two first
– The third involves physically-based animation

 Use rays for simple applications

 Use BVHs to test two complex objects
against each other

 But what if several hundreds of objects?

Tomas Akenine-Mőller © 2002

For many, many objects…

 Test BV of each object against BV of other
object

 Works for small sets, but not very clever

 Reason…

 Assume moving n objects

 If m static objects, then:

2

n
nm

2

n
 Gives: tests

 There are smarter ways: third topic of CD
lecture

Tomas Akenine-Mőller © 2002

Example

Midtown Madness 3, DICE

2

Tomas Akenine-Mőller © 2002

Collision detection with rays

 Imagine a car is driving on a road sloping

upwards

 Could test all triangles of all wheels against

road geometry

 For certain applications, we can approximate,

and still get a good result

 Idea: approximate a complex object with a set

of rays

Tomas Akenine-Mőller © 2002

CD with rays, cont’d

 Put a ray at each wheel

 Compute the closest intersection
distance, t, between ray and road
geometry

 If t=0, then car is on the road

 If t>0, then car is flying above road

 If t<0, then car is ploughing deep in the
road

 Use values of t to compute a simple
collision response

Tomas Akenine-Mőller © 2002

CD with rays, cont’d

 We have simplified car, but not the road

 Turn to spatial data structures for the
road

 Use BVH or BSP tree or height field, for
example

 The distance along ray can be negative

 Therefore, either search ray in both
positive and negative direction

 Or move back ray, until it is outside the
BV of the road geometry

Tomas Akenine-Mőller © 2002

Another simplification

 Sometimes 3D can be turned into 2D

operations

 Example: maze

 A human walking in maze,

can be approximated by a

circle

 Test circle against lines of

maze

 Or even better, move walls outwards with circle

radius

 test center of circle against moved walls

Tomas Akenine-Mőller © 2002

A CD system for accurate detection
and for many objects

 We’ll deal with ”pruning” and ”exact CD”

 ”Simulation” is how objects move

Potentiellt överlapp?

Tomas Akenine-Mőller © 2002

Complex object against
complex object

 For object against object CD, see
http://www.realtimerendering.com/int/

 If accurate result is needed, turn to BVHs

 Use a separate BVH for the two objects

 Test BVH against other BVH for overlap

 When triangles overlap, compute exact
intersection, if needed

 But, first, a clarification on BVH building

3

Tomas Akenine-Mőller © 2002

BVH building example

 Can split on triangle level as well (not

clear from previous presentation)

Use split

plane

Sort using

plane, w.r.t

triangle

centroids

+

Find minimal

boxes=

…and so on.
Tomas Akenine-Mőller © 2002

Pseudo code for BVH against BVH

Pseudocode

deals with 4 cases:

1) Leaf against

leaf node

2) Internal node

against internal node

3) Internal against leaf

4) Leaf against internal

Pseudo coden har ett litet fel:

Byt FindFirstHitCD()

mot if(FindFirstHitCD())

return true;

If (not overlap(A,B)) return false

Tomas Akenine-Mőller © 2002

Comments on pseudocode

 The code terminated when it found the
first triangle pair that collided

 Simple to modify code to continue
traversal and put each pair in a list

 Reasonably simple to include rotations
for objects as well

 Note that if we use AABB for both BVHs,
then the AABB-AABB test becomes a
AABB-OBB test

Tomas Akenine-Mőller © 2002

Tradeoffs

 The choice of BV
– AABB, OBB, k-DOP, sphere

 In general, the tighter BV, the slower test

 Less tight BV, gives more triangle-triangle

tests in the end

 Cost function:

Tomas Akenine-Mőller © 2002

CD between
many objects

 Why needed?

 Consider several hundreds of rocks tumbling

down a slope…

 This system is often called ”First-Level CD”

 We execute this system because we want to

execute the 2nd system less frequently

 Assume high frame-to-frame coherency
– Means that object is close to where it was previous

frame

– Reasonable

Tomas Akenine-Mőller © 2002

Sweep-and-prune algorithm
[by Ming Lin]

 Assume objects may translate and rotate

 Then we can find a minimal AABB, which

is guaranteed to contain object for all

rotations

 Do collision overlap three times

– One for x,y, and z-axes

 Let’s concentrate on one axis at a time

 Each AABB on this axis is an interval,

from si to ei, where i is AABB number

4

Tomas Akenine-Mőller © 2002

1-D Sweep and Prune

Original by Michael Zyda Tomas Akenine-Mőller © 2002

Sweep-and-prune algorithm

 Sort all si and ei into a list

 Traverse list from start to end

 When an s is encounted, mark

corresponding interval as active in an
active_interval_list

 When an e is encountered, delete the
interval in active_interval_list

 All intervals in active_interval_

list are overlapping!

Tomas Akenine-Mőller © 2002

Sweep-and-prune algorithm

 Now sorting is expensive: O(n*log n)

 But, exploit frame-to-frame coherency!

 The list is not expected to change much

 Therefore, ”resort” with bubble-sort, or

insertion-sort

 Expected: O(n)
BUBBLE SORT
for (i=0; i<n-1; i++) {

for (j=0; j<n-1-i; j++)
if (a[j+1] < a[j]) { //compare the two neighbors

tmp = a[j]; /* swap a[j] and a[j+1] */
a[j] = a[j+1];
a[j+1] = tmp;

}
} Tomas Akenine-Mőller © 2002

Sweep-and-prune algorithm

 Keep a boolean for each pair of intervals

 Possible invert when sort order changes

 If all boolean for all three axes are true,
overlap

Toggling the flags (the gritty details)

These flags are only modified when insertion sort performs a swap. We

decide whether or not to toggle a flag based on whether the coordinate

values both refer to bounding box minima, both refer to bounding box

maxima, or one refers to a bounding box minimum and the other a

maximum.

When a flag is toggled, the overlap status indicates one of three situations:

1. All three dimensions of this bounding box pair now overlap. In this case,

we add the corresponding polytope pair to a list of active pairs.

2. This bounding box pair overlapped at the previous time step. In this case,

we remove the corresponding polytope pair from the active list.

3. This bounding box pair did not overlap at the previous time step and does

not overlap at the current time step. In this case, we do nothing.

Tomas Akenine-Mőller © 2002 Tomas Akenine-Mőller © 2002

CD Conclusion

 Very important part of games!

 Many different algorithms to choose from

 Decide what’s best for your case,

 and implement…

ulfassarsson
Text Box
Bonus

