
Efficiency Issues for Ray Tracing

Brian Smits�

University of Utah

February 19, 1999

Abstract

Ray casting is the bottleneck of many rendering algorithms. Although much
work has been done on making ray casting more efficient, most published work
is high level. This paper discusses efficiency at a slightly lower level, presenting
optimizations for bounding volume hierarchies that many people use but are rarely
described in the literature. A set of guidelines for optimization are presented that
avoid some of the common pitfalls. Finally, the effects of the optimizations are
shown for a set of models.

1 Introduction

Many realistic rendering systems rely on ray casting algorithms for some part of their
computation. Often, the ray casting takes most of the time in the system, and signifi-
cant effort is usually spent on making it more efficient. Much work has been done and
published on acceleration strategies and efficient algorithms for ray casting, the main
ideas of which are summarized in Glassner [5]. In addition, many people have devel-
oped optimizations for making these algorithms even faster. Much of this work remains
unpublished and part of oral history. This paper is an attempt to write down some of
these techniques and some higher level guidelines to follow when trying to speed up
ray casting algorithms. I learned most of the lessons in here the hard way, either by
making the mistakes myself, or by tracking them down in other systems. Many of the
observations in here were confirmed by others.

This paper will discuss some mid-level optimization issues for bounding volume
hierarchies. The ray casting algorithm uses the hierarchy to determine if the ray in-
tersects an object. An intersection involves computing the distance to the intersection
and the intersection point as well as which object was hit. Sometimes it includes com-
puting surface normal and texture coordinates. The information computed during an
intersection is sometimes called the hit information. In ray tracing based renderers,
rays from the eye are called primary rays. Reflected and transmitted rays are known
as secondary rays. Together, these rays are called intersection rays. Rays from hits to
lights to determine shadowing are called shadow rays.

�bes@cs.utah.edu

1



2 Principles of Optimization

Optimization can be a seductive activity leading to endless tweaks and changes of code.
The most important part of optimization is knowing when not to do it. Two common
cases are:

� Code or system is not run frequently.

� Code is a small fraction of overall time.

In other words, code should only be optimized if it will make a significant effect on
the final system and the final system will be used frequently enough to justify the
programmer’s time and the chance of breaking something.

It helps to have a set of principles to follow in order to guide the process of opti-
mization. The set I use is:

� Make it work before you make it fast.

� Profile everything you do.

� Complexity is bad.

� Preprocessing is good.

� Compute only what you need.

2.1 Make it Work Before You Make it Fast

Code should be made correct before it is made fast [2]. As stated repeatedly by Knuth
[9] “Premature optimization is the root of all evil”. Obviously, slow correct code is
more useful than fast broken code. There is an additional reason for the rule, though.
If you create a working, unoptimized version first, you can use that as a benchmark
to check your optimizations against. This is very important. Putting the optimizations
in early means you can never be completely sure if they are actually speeding up the
code. You don’t want to find out months or years later that your code could be sped up
by removing all those clever optimizations.

2.2 Profile Everything You Do

It is important to find out what the bottleneck is before trying to remove it. This is
best done by profiling the code before making changes [3]. The best profilers give time
per line of code as well as per function. They also tell you how many times different
routines are called. Typically what this will tell you is that most of the time is spent
intersecting bounding boxes, something that seems to be universally true. It also can
tell you how many bounding boxes and primitives are checked.

Like many algorithms, the speed will vary based on the input. Obviously large data
sets tend to take more time than small ones, but the structure of the models you use for
benchmarking is also important. Ideally you use a set of models that are characteristic
of the types of models you expect to use.

2



Profiling is especially critical for low-level optimizations. Intuition is often very
wrong about what changes will make the code faster and which ones the compiler was
already doing for you. Compilers are good at rearranging nearby instructions. They
are bad at knowing that the value you are continually reading through three levels of
indirection is constant. Keeping things clean and local makes a big difference. This
paper makes almost no attempt to deal with this level of optimization.

2.3 Complexity is Bad

Complexity in the intersection algorithm causes problems in many ways. The more
complex your code becomes, the more likely it is to behave unexpectedly on new data
sets. Additionally, complexity usually means branching, which is significantly slower
than similar code with few branches. If you are checking the state of something in
order to get out of doing work, it is important that the amount of work is significant
and that you actually get out of doing the work often enough to justify the checks. This
is the argument against the caches used in Section 4.4.

2.4 Preprocessing is Good

In many of the situations where ray casting is used, it is very common to cast hundreds
of millions of rays. This usually takes a much longer time than it took to build the
ray tracing data structures. A large percentage increase in the time it takes to build
the data structures may provide a significant win even if the percentage decrease in
the ray casting time of each ray is much smaller. Ideally you increase the complexity
and sophistication of the hierarchy building stage in order to reduce the complexity
and number of intersections computed during the ray traversal stage. This principle
motivates Section 4.3.

2.5 Compute Only What You Need

There are many different algorithms for many of the components of ray casting. Of-
ten there are different algorithms because different information is needed out of them.
Much of the following discussion will be based on the principle of determining the
minimum amount of information needed and then computing or using that and noth-
ing more. Often this results in a faster algorithm. Examples of this will be shown in
Sections 4.1 and 4.2.

3 Overview of Bounding Volume Hierarchies

A bounding volume hierarchy is simply a tree of bounding volumes. The bounding
volume at a given node encloses the bounding volumes of its children. The bounding
volume of a leaf encloses a primitive. If a ray misses the bounding volume of a par-
ticular node, then the ray will miss all of its children, and the children can be skipped.
The ray casting algorithm traverses this hierarchy, usually in depth first order, and de-
termines if the ray intersects an object.

3



BoundingVolume BuildHierarchy(bvList, start, end, axis)
if(end - start == 0) // only a single bv in list so return it.

return bvList[start]
BoundingVolume parent
foreach bv in bvList

expand parent to enclose bv
sort bvList along axis
axis = next axis
parent.AddChild(BuildHierarchy(bvList, start, (start + end) / 2, axis)
parent.AddChild(BuildHierarchy(bvList, 1 + (start + end) / 2, end, axis)
return parent

Figure 1: Building a bounding volume hierarchy recursively.

There are several ways of building bounding volume hierarchies [6, 10]. The sim-
plest way to build them is to take a list of bounding volumes containing the primitives
and sort along an axis[8]. Split the list in half, put a bounding box around each half, and
then recurse, cycling through the axes as you recurse. This is expressed in pseudocode
in Figure 1. This method can be modified in many ways to produce better hierarchies.
A better way to build the hierarchy is to try to minimize the cost functions described
by Goldsmith and Salmon [6].

4 Optimizations for Bounding Volume Hierarchies

4.1 Bounding Box Intersections

Intersecting rays with bounding volumes usually accounts for most of the time spent
casting rays. This makes bounding volume intersection tests an ideal candidate for
optimization. The first issue is what sort of bounding volumes to use. Most of the
environments I work with are architectural and have many axis-aligned planar surfaces.
This makes axis-aligned bounding boxes ideal. Spheres tend not to work very well for
this type of environment.

There are many ways to represent and intersect an axis-aligned bounding box. I
have seen bounding box code that computed the intersection point of the ray with the
box. If there was an intersection point, the ray hits the box, and if not, the ray misses.
There are optimizations that can be made to this approach, such as making sure you
only check faces that are oriented towards the ray, and taking advantage of the fact that
the planes are axis aligned [11]. Still, the approach is too slow. The first hint of this
is that the algorithm computes an intersection point. We don’t care about that, we just
want a yes or no answer. Kay [8] represented bounding volumes as the intersection
of a set of slabs (parallel planes). A slab is stored as a direction, Ds, and an interval,
Is, representing the minimum and maximum value in that direction, effectively as two
plane equations. The set of slab directions is fixed in advance. In my experience, this
approach is most effective when there are three, axis aligned, slab directions. This is
just another way of storing a bounding box, we store minimum and maximum values

4



bool RaySlabsIntersection(ray, bbox)
Interval inside = ray.Range()
for i in (0,1,2)

inside = Intersection(inside,(slab[i].Range()-ray.Origin[i])/ray.Direction[i])
if(inside.IsEmpty())

return false
return true

Figure 2: Pseudocode for intersecting a ray with a box represented as axis aligned
slabs.

along each axis.
Given this representation, we can intersect a bounding box fairly efficiently. We

show this in pseudocode in Figure 2. This code isn’t as simple as it looks due to the
comparisons of the IsEmpty and Intersection functions and the need to reverse the min
and max values of the interval when dividing by a negative number, but it is still much
faster than computing the intersection point with the box.

One important thing to notice about this representation and this intersection code
is that it gives the right answer when the ray direction is 0 for a particular component.
In this case the ray is parallel to the planes of the slab. The divide by zero gives either
[�1;�1] or [+1;+1] when the ray is outside the slab and [�1;+1] when the
ray is inside. This saves additional checks on the ray direction.

4.2 Intersection Rays versus Shadow Rays

It is important to know what kind of information you need from the ray casting algo-
rithm in order to keep from doing more work than necessary. There are three com-
monly used ray casting queries: closest hit, any hit, and all hits. Closest hit is used to
determine the first object in a given direction. This query is usually used for primary,
reflected, and transmitted rays. Any hit is used for visibility tests between two points.
This is done when checking to see if a point is lit directly by a light and for visibility
estimation in radiosity algorithms. The object hit is not needed, only the existence of
a hit. All hits is used for evaluating CSG models directly. The CSG operations are
performed on the list of intervals returned from the all hits intersection routine.

For efficiency reasons it is important to keep these queries separate. This can be
seen by looking at what happens when using the most general query, all hits, to im-
plement the others. Any hit will simply check to see if the list of intersections is
empty. Clearly we computed more than we needed in this case. Closest hit will sort
the list and return the closest intersection. It may seem as if the same or more work
is needed for this query, however this is usually not the case. With most ray tracing
efficiency schemes, once an intersection is found, parts of the environment beyond the
intersection point can be ignored. Finding intersections usually speeds up the rest of
the traversal. Also, the list of hit data does not need to be maintained.

Shadow (any hit) rays are usually the most common type of rays cast, often ac-
counting for more than 90 percent of all rays. Because of this, it is worth considering
how to make them faster than other types of rays. Shadow rays need not compute any

5



A

B
C

D E F

A
B
D
E
F
C

A

B
C

D E F

Figure 3: Three different representations for a tree. (a) Children pointers. (b) Left
child, right sibling, parent pointers. (c) Array in depth-first order with skip pointers.

of the commonly needed intersection information, such as intersection point, surface
normal, uv coordinates, or exact object hit. Additionally, the traversal of the efficiency
structure can be terminated immediately once an intersection is guaranteed. A special
shadow routine taking these factors into account can make a significant difference in
efficiency.

The difference between shadow rays and intersection rays determined which accel-
eration scheme I use. I have tried both grids [4] and bounding volume hierarchies. In
my experience (based on models I typically render) grids are a little faster on intersec-
tion rays (closest hit) and slower for shadow rays (any hit). Grids sort the environment
spatially, which is good for finding the closest intersection. The bounding volume hi-
erarchies built by trying to minimize Goldsmith and Salmon’s cost function [6] tend to
keep larger primitives near the root, which is good for shadow rays. It is still unknown
as to which acceleration scheme is better, and it is almost certainly based on the model.

4.3 Traversal Code

Casting a ray against a bounding volume hierarchy requires traversing the hierarchy. If
a ray hits a bounding volume, then the ray is checked against the children of the bound-
ing volume. If the bounding volume is a leaf, then it has an object inside it, and the
object is checked. This is done in depth-first order. Once bounding volume intersection
tests are as fast as they can be, the next place for improvement is the traversal of the
hierarchy. Traversal code for shadow rays will be used in the following discussion.

In 1991, Haines[7] published some techniques for better traversals. Several of these
techniques used extra knowledge to mark bounding boxes as automatically hit and to
change the order of traversal. In my experience these methods do not speed up the ray
tracer and greatly increase the complexity of the code. This difference in experience
may be due to changes in architecture over the last 8 years that make branches and
memory accesses instead of floating point the bottleneck. It may also be due to faster
bounding box tests. I have found that the best way to make the traversal fast is to make
it as minimal as possible.

The simplest traversal code is to use recursion to traverse the tree in depth-first or-
der. Figure 3(a) shows a hierarchy of bounding boxes. Depth first traversal means that
bounding box A is tested, then box B, then the boxes with primitives D, E, and F. The
idea is to find an intersection as soon as possible by traveling down into the tree. The

6



TreeShadowTraversal(ray, bvNode)
while(true) // termination occurs when bvNode!GetParent() is NULL

if(bvNode!Intersect(ray))
if(bvNode!HasPrimitive())

if(bvNode!Primitive().Intersect(ray))
return true

else
bvNode = bvNode!GetLeftChild()
continue

while(true)
if(bvNode!GetRightSibling() != NULL)

bvNode = bvNode!GetRightSibling()
break

bvNode = bvNode!GetParent()
if(bvNode == NULL)

return false

Figure 4: Traversal of bounding volume tree using left child, right sibling, parent struc-
ture.

biggest problem with this is the function call overhead. The compiler maintains much
more state information than we need here. We can eliminate much of this overhead by
changing our representation of the tree. A representation that works well is to store the
left-most child, the right sibling, and the parent for each node, as in Figure 3. Using
this representation we can get rid of the recursion by following the appropriate pointers.
If the ray intersects the bounding box, we get to its children by following the left-most
child link. If the ray misses, we get to the next node by following the right sibling link.
If the right sibling is empty, we move up until either there is a right sibling, or we get
back up to the root, as shown in pseudocode in Figure 4.

This tree traversal also does too much work. Notice that when the traversal is at
a leaf or when the ray misses a bounding volume, we compute the next node. The
next node is always the same, there is no reason to be computing it for each traversal.
We can pre-compute the node we go to when we skip this subtree and store this skip
node in each node. This step eliminates all computation of traversal related data from
the traversal. There are still intersection computations, but no extra computation for
determining where to go. This is expressed in pseudocode in Figure 5

The final optimization is the recognition that we only need to do depth-first traver-
sals on the tree once it is built. This observation lets us store the tree in an array in
depth-first order as in Figure 3. If the bounding volume is intersected, the next node to
try is the next node in the array. If the bounding volume is missed, the next node can be
found through the skip mechanism. We have effectively thrown out all the information
we don’t need out of the tree, although it is still possible to reconstruct it. The traversal
code can be seen in Figure 6.

The array traversal approach works significantly better than the previous one, and
has a couple subtle advantages. The first is better memory usage. In addition to the

7



SkipTreeShadowTraversal(ray, bvNode)
while(bvNode != NULL)

if(bvNode!Intersect(ray))
if(bvNode!HasPrimitive())

if(bvNode!Primitive().Intersect(ray))
return true

bvNode = bvNode!SkipNode()
else

bvNode = bvNode!GetLeftChild()
else

bvNode = bvNode!SkipNode()
return false

Figure 5: Traversal of bounding volume tree using left child, and skip pointers.

ArrayShadowTraversal(ray, bvNode)
stopNode = bvNode!GetSkipNode()
while(bvNode < stopNode)

if(bvNode!Intersect(ray))
if(bvNode!HasPrimitive())

if(bvNode!Primitive().Intersect(ray))
return true

bvNode++
else

bvNode = bvNode!GetSkipNode()
return false

Figure 6: Traversal of bounding volume tree stored as an array in depth-first order.

bounding volume, this method requires only a pointer to a primitive and a pointer to
the skip node. This is very minimal. Since the nodes are arranged in the order they
will be accessed in, there is more memory coherency for large environments. The
second advantage is that this method requires copying data from the original tree into
an array. Since the original tree is going to be thrown out, it can be augmented with
extra information. Depending upon how the tree is created, this extra information can
more than double the cost of each node. Now there is no penalty for this information.
Storing the extra information can reduce the time to build the tree and more importantly
can result in better trees. The fastest bounding volume test is the one you don’t have to
do.

4.4 Caching Objects

One common optimization is the use of caches for the object most recently hit. This
optimization and variations on it were discussed by Haines[7]. The idea is that the next
ray cast will be similar to the current ray, so keep the intersected object around and
check it first the next time. To the extent that this is true, caches can provide a benefit,

8



however rays often differ wildly. Also, cache effectiveness decreases as the size of the
primitives get smaller. The realism of many types of models is increased by replacing
single surfaces with many surfaces. Now caches will remain valid for a shorter amount
of time.

There are two different types of caches, those for intersection (closest hit) rays and
those for shadow (any hit) rays. If caches are used for intersection rays, the ray will still
need to be checked against the environment to see if another object is closer. Usually
the ray will again be checked against whatever object is in the cache. Mailboxes [1]
can eliminate this second check (by marking each tested object with a unique ray id
and then checking the id before testing the primitive). Mailboxes, however, create
problems when making a parallel version of the code. Depending on the environment
and the average number of possible hits per ray, the cache may reduce the amount of the
environment that must be checked by shortening the ray length. In my experience, the
cost of maintaining the cache and the double intersection against an object in it more
than outweighs the benefit of having a cache. If your primitives are very expensive and
your environments are dense, the benefit of reducing the length of the ray early may
outweigh the costs, but it is worth checking carefully.

Evaluating the benefit of caches for shadow rays is more complicated. In cases
where there is a single light, there tends to be a speedup as long as the cache remains
full much of the time and the objects in it stay there for a long enough time. In cases
where there are multiple lights we often lose shadow ray coherence because the lights
are in different regions of the environment. Now each shadow ray is significantly
different from the previous one. A solution for this is to have a different cache for
each light.

For both types of caches, we have ignored what happens for reflected and transmit-
ted rays. These rays are spatially very different from primary rays and from each other.
Each additional bounce makes the problem much worse. If rays are allowed to bounce
d times, there are 2d+1 � 1 different nodes in the ray tree. In order for caching to be
useful, a separate cache needs to be associated with each node. For shadow rays, that
means a separate cache for each light at each node This can increase the complexity
of the code significantly. Another option is to store a cache for each light on each ob-
ject (or collection of objects) in the environment as discussed by Haines[7]. Note that
caching only helps when there is an object in the cache. If most shadow rays won’t hit
anything (due to the model or the type of algorithm using the shadow tests) then the
cache is less likely to be beneficial. In my experience, shadow caching wasn’t a sig-
nificant enough gain, so I opted for simplicity of code and removed it, although after
generating the data for the result section I am considering putting it back in for certain
situations. Others have found that caches are still beneficial.

5 Results

Now we look at the cumulative effects for shadow rays of the three main optimizations
described in the paper. First we speed up bounding box tests. Next we speed up the
traversal using the different methods from Section 4.3. We then treat shadow rays
differently from intersection rays and lastly we add a shadow cache. In all of the

9



1 2 3 4 5 6 7 8
theater 64 36 30 21 22 11 10 6
lab 79 41 32 22 20 12 12 7
10,000 small 415 223 191 142 110 48 50 27
10,000 mid 392 185 154 103 81 77 79 65
10,000 big 381 179 152 104 82 79 77 69
100,000 small 995 620 550 449 351 62 63 33
100,000 mid 932 473 424 324 230 146 148 89
100,000 big 1024 508 442 332 240 210 212 156
300,000 mid 1093 597 536 421 312 120 121 64

Table 1: Results of the different experiments described in the text on different environ-
ments. Times rounded to the nearest second.

experiments 1,000,000 rays are generated by choosing random pairs of points from
within a bounding box 20% larger than the bounding box of the environment. In the
last experiment, 500,000 rays are generated, each generated ray is cast twice, resulting
in 1,000,000 rays being cast overall. The first two test cases are real environments, the
rest are composed of randomly oriented and positioned unit right triangles. The number
gives the number of triangles. Small, mid, and big refer to the space the triangles fill.
Small environments are 20 units cubed, mid are 100 units cubed, and big are 200 units
cubed. The theater model has 46502 polygons. The science center model has 4045
polygons. The code was run on an SGI O2 with a 180 MHz R5000 using the SGI
compiler with full optimization turned on1. No shading or other computation was done
and time to build the hierarchies was not included.

The experiments reported in Table 1 are explained in more detail below:

1. Bounding box test computes intersection point, traversal uses recursion, and
shadow rays are treated as intersection rays.

2. Bounding box test replaced by slab version from Section 4.1.

3. Recursive traversal replaced by iterative traversal using left child, right sibling,
and parent pointers as in Section 4.3.

4. Skip pointer used to speed up traversal as in Section 4.3.

5. Tree traversal replaced by array traversal as in Section 4.3.

6. Intersection rays replaced by shadow rays as in Section 4.2.

7. Shadow caching used as in Section 4.4.

8. Shadow caching used, but each ray checked twice before generating a new ray.
The same number of checks were performed.

1-Ofast=ip32 5k

10



The first thing to notice is that real models require much less work than random
polygons. This is because the polygons are distributed very unevenly and vary greatly
in size. The theater has a lot more open space and even more variation in polygon size
than the lab, resulting in many inexpensive rays and a faster average time. In spite
of this, the results show very similar trends for all models. In the first 5 experiments
we haven’t used any model-specific knowledge, we have just reduced the amount of
work done. Special shadow rays and caching are more model specific. Shadow rays
are more effective when there are many intersections along the ray and are almost the
same when there is zero or one intersection. Shadow caching is based on ray coherence
and the likelihood of having an intersection. In experiment 7 there is an unrealistically
low amount of coherence (none). In experiment 8 we guaranteed that there would be
significant coherence by casting each ray twice.

6 Conclusions

The optimization of ray casting code is a double-edged sword. With careful profiling
it can result in significant speedups. It can also lead to code that is slower and more
complicated. The optimizations presented here are probably fairly independent of the
computer architecture. There are plenty of significant lower level optimizations that
can be made which may be completely dependent upon the specific platform. If you
plan on porting your code to other architectures, or even keeping your code for long
enough that the architecture changes under you, these sorts of optimizations should be
made with care.

Eventually you get to a point where further optimization makes no significant dif-
ference. At this point you have no choice but to go back and try to create better trees
requiring fewer primitive and bounding box tests, or to look at entirely different accel-
eration strategies. Over time, the biggest wins come from better algorithms, not better
code tuning.

The results presented here should be viewed as a case study. They describe some
of what has worked for me on the types of models I use. They may not be appropriate
for the types of models you use.

7 Acknowledgments

Thanks to Peter Shirley, Jim Arvo, and Eric Haines for many long discussions on ray
tracing. Thanks to Peter and Eric for encouraging me to write up these experiences,
and to both of them and Bill Martin for helpful comments on the paper. This work was
partially funded by Honda and NSF grant ACI-97-20192.

References

[1] ARNALDI, B., PRIOL, T., AND BOUATOUCH, K. A new space subdivision
method for ray tracing CSG modelled scenes. The Visual Computer 3, 2 (Aug.
1987), 98–108.

11



[2] BENTLEY, J. L. Writing Efficient Programs. Prentice-Hall, Englewood Cliffs,
NJ, 1982.

[3] BENTLEY, J. L. Programming Pearls (reprinted with corrections). Addison-
Wesley, Reading, MA, USA, 1989.

[4] FUJIMOTO, A., TANAKA, T., AND IWATA, K. Arts: Accelerated ray-tracing
system. IEEE Computer Graphics and Applications (Apr. 1986), 16–26.

[5] GLASSNER, A., Ed. An Introduction to Ray Tracing. Academic Press, 1989.

[6] GOLDSMITH, J., AND SALMON, J. Automatic creation of object hierarchies for
ray tracing. IEEE Computer Graphics and Applications 7, 5 (May 1987), 14–20.

[7] HAINES, E. Efficiency improvements for hierarchy traversal. In Graphics Gems
II, J. Arvo, Ed. Academic Press, San Diego, 1991, pp. 267–273.

[8] KAY, T. L., AND KAJIYA, J. T. Ray tracing complex scenes. In Computer
Graphics (SIGGRAPH ’86 Proceedings) (Aug. 1986), D. C. Evans and R. J.
Athay, Eds., vol. 20, pp. 269–278.

[9] KNUTH, D. E. Literate Programming. CSLI Lecture Notes Number 27. Stan-
ford University Center for the Study of Language and Information, Stanford, CA,
USA, 1992.

[10] RUBIN, S. M., AND WHITTED, T. A 3-dimensional representation for fast ren-
dering of complex scenes. Computer Graphics 14, 3 (July 1980), 110–116.

[11] WOO, A. Fast ray-box intersection. In Graphics Gems, A. S. Glassner, Ed.
Academic Press, San Diego, 1990, pp. 395–396.

12


