
Motion Blur - as a post processing 
effect

Presented by Richard Fredriksson and Fredrik Wendt
Original paper by Gilberto Rosado



What is Motion Blur?
 Artifact of the camera
 Shutter speed
 Speed of objects
 Camera tracking



Motion Blur Photo



Motion Blur - Why simulate an image 
artifact?
 Enhanced game immersion
 Illusion of speed
 Reduced stuttering, feels more natural
 Increasing frame rate does not eliminate the need for 

motion blur
 Dramatic effect



Motion Blur in a game

Killzone 2 



Motion Blur
 Techniques mentioned in paper
 Multiple render passes

 Velocity buffer
 Used for motion blur of a dynamic rigid bodies

 Post processing effect
 This paper

 Other techniques
 Model and render the blur

 Geometry shader
 Accumulation buffer

 Slow but perfectly correct solution
 Motion blurring textures

 Sets of preblurred images



Multiple Render Passes

Advantages Disadvantages

 Good image quality
 Only blurs selected 

objects
 Can handle dynamic 

rigid bodies

 Slow, sometimes we 
cannot afford to go 
through the entire 
graphics pipeline more 
than once

 A lot of work to integrate 
into an engine

 Memory limited (without 
workarounds)



Motion Blur as a Post Processing Effect

Advantage Disadvantage

 Easily integrated into an 
existing engine

 Fast, offers better 
performance then 
multipass rendering

 Only offers motion blur 
for camera movement

 Objets that should not 
be motion blurred must 
be masked



Details – Depth Buffer
 DX10 
 Direct sample from the depth buffer

 DX9
 Write depth to texture

 Driver hack work around?



Details – World space positions

Z = Depth Texture sample
H = Viewport space position
H = (x * 2 – 1, (y-1) * 2 – 1, z, 1)
M = World-view-projection matrix

D = H * inverse(M)
WorldPosition = D / D.w



Details – Velocity of each pixel

CurrentPosition = H
OldM = previous view-port-projection Matrix
PrevPosition = WorldPosition * oldM
PrevPosition = PrevPosition / PrevPosition.w

Velocity = (CurrentPosition – PrevPosition) / 2



Details – Performing Motion Blur

Color = Sample the color buffer
TexCoord = TexCoord + velocity

Loop for NumberOfSamples
CurrentColor = sample at TexCoord
Color = Color + CurrentColor
TexCoord = TexCoord + velocity

FinalColor = Color / NumberOfSamples



Motion blur effect applied

GPU Gems



Other – Handling Dynamic Objects
 As mentioned this technique only takes camera 

movement into account

 Velocity buffer
 Transform object by using both current and last frames 

view-projection matrix
 Compute difference 
 Render color buffer
 Use velocity buffer to blur at each pixel sampling from the 

color buffer render



Other – Masking Off Objects
 Often when using Motion Blur parts of the scene 

should not be blurred
 In order to achieve this a mask is used to determine 

what pixels should be blurred



Conclusion
 Easily integrated into an existing rendering engine
 Better performance than traditional multipass 

solutions

 No benchmark data
 No real comparison



Demo

Thanks for taking the time to listen


	Motion Blur - as a post processing effect�
	What is Motion Blur?
	Motion Blur Photo
	Motion Blur - Why simulate an image artifact?
	Motion Blur in a game
	Motion Blur
	Multiple Render Passes
	Motion Blur as a Post Processing Effect
	Details – Depth Buffer
	Details – World space positions
	Details – Velocity of each pixel
	Details – Performing Motion Blur
	Motion blur effect applied
	Other – Handling Dynamic Objects
	Other – Masking Off Objects
	Conclusion
	Demo

