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Figure 1: In-game views of a two-layer LEAN map ocean with sun just off screen to the right, and artist-selected shininess equivalent to a
Blinn-Phong specular exponent of 13,777: (a) near, (b) mid, and (c) far. Note the lack of aliasing, even with an extremely high power.

Abstract

We introduce Linear Efficient Antialiased Normal (LEAN) Map-
ping, a method for real-time filtering of specular highlights in bump
and normal maps. The method evaluates bumps as part of a shading
computation in the tangent space of the polygonal surface rather
than in the tangent space of the individual bumps. By operat-
ing in a common tangent space, we are able to store information
on the distribution of bump normals in a linearly-filterable form
compatible with standard MIP and anisotropic filtering hardware.
The necessary textures can be computed in a preprocess or gener-
ated in real-time on the GPU for time-varying normal maps. The
method effectively captures the bloom in highlight shape as bumps
become too small to see, and will even transform bump ridges into
anisotropic shading. Unlike even more expensive methods, several
layers can be combined cheaply during surface rendering, with per-
pixel blending. Though the method is based on a modified Ward
shading model, we show how to map between its parameters and
those of a standard Blinn-Phong model for compatibility with ex-
isting art assets and pipelines, and demonstrate that both models
produce equivalent results at the largest MIP levels.
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1 Introduction

For over thirty years, bump mapping has been an effective method
for adding apparent detail to a surface [Blinn 1978]. We use the
term bump mapping to refer to both the original height texture that
defines surface normal perturbation for shading, and the more com-
mon and general normal mapping, where the texture holds the ac-
tual surface normal. These methods are extremely common in video
games, where the additional surface detail allows a rich visual ex-
perience without complex high-polygon models.

Unfortunately, bump mapping has serious drawbacks with filtering
and antialiasing. When viewed at a distance, standard MIP map-
ping of a bump map can work for diffuse shading [Kilgard 2000],
but fails to capture changes in specularity. A shiny but bumpy sur-
face, seen far enough away that the bumps are no longer visible,
should appear as if it were a duller surface, with formerly visible
bumps becoming part of the surface microstructure. Bump map-
ping will instead produce a surface with the correct average normal
but the original shininess (Figure 2(a-c)), which can lead to signifi-
cant aliasing.

The problem is even worse for bumps with any repeated directional
pattern. Bump directionality should result in anisotropic shading
when the bumps are no longer individually discernible, much as
with geometrically derived anisotropic shading models [Poulin and
Fournier 1990]. Traditional bump maps instead revert to a symmet-
ric highlight (Figure 2(d-f)).

Existing approaches either require precomputation too expensive
to compute on the fly [Cabral et al. 1987; Fournier 1992; Westin
et al. 1992; Schilling 1997; Han et al. 2007], large per-texel run-
time data [Fournier 1992; Han et al. 2007], or significant approx-
imations to the shading model [Olano and North 1997; Toksvig
2005]. Many use representations that do not combine linearly, vio-
lating a core assumption of standard texture filtering [Cabral et al.
1987; Westin et al. 1992; Schilling 1997]. We instead desire an ap-
proach that is fast, compatible with existing texture filtering hard-
ware, and requires minimal precomputation to allow live changes to
bump shapes. It should allow even extremely shiny surfaces with-
out aliasing artifacts. As a further constraint, the method should
work well with existing Blinn-Phong based lighting [Blinn 1977],
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Figure 2: Comparison of traditional bump mapping and LEAN
mapping. (a) Finest MIP level of 512x512 bump map. Either
method works at this level. (b) Coarsest MIP level of bump
map with traditional bump filtering and Blinn-Phong shading. (c)
Coarsest MIP level using LEAN mapping. (d) Finest MIP level of
a ridged bump map. (e) Coarsest MIP level with traditional bump
filtering. (f) Coarsest MIP level with LEAN mapping.

to avoid heavy changes to existing game assets and art tools. Fi-
nally, we would like to be able to combine several layers of bumps,
for time-varying effects, high-resolution decals, and detail textures.

We have developed LEAN Mapping (Linear Efficient Antialiased
Normal Mapping) as a modification of the Ward [1992] shading
model that computes bump shading as off-center probability distri-
butions in the overall surface tangent space. This combined bump
and shading model uses the linear mixing property of the mean and
second moment of these distributions to allow filtered recombina-
tion of bumps. The new model requires just one additional MIP
texture lookup per shading evaluation, and effectively captures an-
tialiasing of highlight shape and transition of anisotropic bumps
into an anisotropic highlight. Further, it is easy to generate the nec-
essary textures on the GPU from an existing height or normal map,
requiring just one rendering pass into two texture render targets plus
standard MIP level generation. We have also developed three meth-
ods for combining multiple filtered bump maps at render-time, with
varying tradeoffs depending on the per-frame rendering budget.

2 Related Work

Blinn [1978] invented bump mapping as a means of adding surface
detail, using a scalar texture to define a displacement of the under-
lying surface. His bump maps have the advantage of being easily
extended to true displacement maps, but require computing the par-
tial derivatives at shading time. As a result, most recent implemen-
tations instead use a normal map [Cohen et al. 1998], commonly
defined in the surface tangent space [Peercy et al. 1997].

Williams [1983] first noticed the problem of highlight aliasing with
texture filtering, which Kajiya [1985] identified as part of a hier-
archy of scales from surface changes to bumps to BRDF. Many
approaches to bridge one or more stages of this hierarchy exceed
our constraints for precomputation, for example using Monte-Carlo
tracing of bump microstructure [Cabral et al. 1987; Westin et al.
1992; Becker and Max 1993].

Filtering of diffuse-shaded bumps can just use the un-normalized
normals from linear texture filtering [Kilgard 2000]. The combina-
tion of filtered bumps and specular reflection is not so straightfor-
ward. One of the most active areas of research in specular normal
filtering surrounds what representation to use for the combination
of bumps and shading. Some operate in the tangent plane of the

~v arbitrary vector
~v.xy,~v.z subsets of components of ~v

v̂ ~v normalized to unit length
ṽ ~v projected onto its z = 1 plane: ~v.xy/~v.z
~vn ~v in a space with the z axis aligned with ~n

~n base surface normal
~b bump normal
~v vector from surface toward viewer
~l vector from surface toward light
~h vector half way between ~v and ~l: (v̂ + l̂)
s Blinn-Phong specular exponent
Σ 2D covariance matrix

Figure 3: Notation

surface: Fournier [1992] numerically fits up to seven “Phong lobes”
per MIP texel to the distribution of normals in the base level, total-
ing 56 per trilinear MIP lookup, while Schilling [1997] stores the
variance of a 2D Gaussian distribution of normals, Toksvig [2005]
estimates a 2D Gaussian based on normal length after MIP lookup,
and Kautz and Seidel [2000] assume a fractal self-similar bump and
BRDF distribution. Others assume a full 3D distribution of nor-
mals, either as a 3D Gaussian distribution [Olano and North 1997],
or a mixture of Von Mises-Fischer distributions fit with spherical
harmonics [Han et al. 2007]. None of these existing methods han-
dle combination of bump layers.

The most promising for our purposes are those that support a sim-
ple MIP-based reconstruction. Of these, Olano and North [1997]
and Toksvig [2005] do not have the reconstruction accuracy we de-
sire, and Han et al. [2007] is too expensive in precomputation and
run-time use. Like our method, Schilling [1997] represents bumps
as Gaussian variance, but in a form that does not truly combine
linearly. Donnelly and Lauritzen [2006] showed linear texture fil-
tering of Gaussian mean and second moments for Variance Shadow
Mapping, a representation we adopt for bump filtering.

Microfacet shading models are particularly amenable to a combined
bump-shading model, since they already assume a statistical distri-
bution of normal facets. Many realistic shading models are based
on a Beckmann distribution [Beckmann and Spizzichino 1963] over
the hemisphere of normal directions above the surface [Cook and
Torrance 1981; Ward 1992; He et al. 1991]. We use a Ward model
with an added Fresnel term. This is essentially the same as the
Cook-Torrance model without shadowing and masking terms used
by Hara et al. [2005] and Han et al. [2007].

3 Method

We develop LEAN mapping as a simple model that is compatible
with existing diffuse bump filtering, has low precomputation cost,
low run-time cost, can be used alongside existing Blinn-Phong or
Beckmann-distribution based shading models, and allows several
approaches to the combination of multiple bump layers.

Notation used in this section is summarized in Figure 3.

3.1 Blinn-Phong/Beckmann Equivalence

Our bump specularity is a modification of the Ward model [Ward
1992]. The Ward model assumes perfectly reflective microfacets,
randomly distributed around the overall surface normal. The Beck-
mann distribution, a Gaussian distribution of normal slopes, is eval-
uated at the half vector,~h, to give the expected number of facets that
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Figure 4: Comparison of Blinn-Phong and Beckmann highlight
shape as a function of angle between ~n and ~h (in radians). Fit
improves dramatically with increasing s.

the distribution predicts will be perfectly oriented to reflect ~v to ~l.

To use it with existing Blinn-Phong-based game assets, we first
show the equivalence of the Blinn-Phong model and a symmetric
Ward model based on the Beckmann distribution. Lyon [1993] ob-
served that Blinn-Phong approximates a Gaussian as the specular
exponent s increases. From this, we observe that it also well ap-
proximates an isotropic Beckmann distribution with variance 1/s

(See Figure 4). In terms of the angle θ between n̂ and ĥ, we have

cos(θ)s ≈ e−
s
2 tan2 θ.

The Beckmann distribution should be normalized by multiplying by
s/
√

2π. The entire normalization factor for the largest MIP level
could be incorporated into the specular coefficient. Instead, we in-
clude the multiplication by s in all instances of the Blinn-Phong
model (but still fold the constant term into the specular coefficient).
In fact, for our current game title, we were already using the s nor-
malization of Blinn-Phong to avoid loss of apparent total brightness
as the highlight tightens. Figure 5(a) and (b) show that these two
models produce visually equivalent results.

3.2 Surface Beckmann

The Beckmann distribution is a 2D Gaussian distribution on the
projection of the microfacet normals onto a plane one unit above the
surface (Figure 6). Since we will be dealing with many such projec-
tions, we introduce the notation h̃ for the 2D projection of ~h onto
the z = 1 plane. Beckmann-based shading models use a Gaussian
centered at the origin on this plane. When applied to bump maps,
each bump normal defines its own tangent plane for projection. One
problem for previous attempts to MIP a combined bump and spec-
ular model is the difficulty in combining these distinct planes (Fig-
ure 7). Previous approaches have resolved the projection problem
with distributions on a sphere [Olano and North 1997; Han et al.
2007] or by folding bump contribution into roughness at each level
of the MIP pyramid [Schilling 1997]. We solve it by incorporat-
ing the bump normal direction into the Beckmann shading model.
We use the normal of the underlying surface as the common projec-
tion plane, and represent the specular highlight on each bump as a
Gaussian centered on the bump normal’s projection onto this plane
(Figure 8). Rather than the standard Beckmann distribution

1√
2π|Σ|

e−
1
2 h̃T

b Σ−1h̃b ,

we use

1√
2π|Σ|

e−
1
2 (h̃n−b̃n)T Σ−1(h̃n−b̃n). (1)

Figure 5(c) shows that this model is visually equivalent to the stan-
dard Blinn-Phong and Beckmann models.

(a) (b)

(c) (d)

Figure 5: Visual equivalence of shading models at a scale that
avoids filtering, showing a sphere with both a frontal and glancing
highlight: (a) Blinn-Phong applied to bump normal; (b) Beckmann
in the bump tangent frame; (c) Beckmann in the surface tangent
frame with bumps as off-center distributions; (d) LEAN mapping,
mathematically equivalent to (c) at this scale.

Figure 6: 2D illustration of a Beckmann distribution-based light-
ing model. Unit vectors v̂ and l̂ are used to compute ~h half way
between them. ~h is projected onto a plane perpendicular to n̂, and
a Gaussian centered at 0 on this plane gives the specular reflection.

3.3 Normal, Mean, Covariance, and Moments

Once we represent the microfacet distribution of each bump in a
common plane, combining bumps from two texels into a new col-
lective distribution is straightforward. Assume two texture samples
in the MIP map have mean bump directions b̄ and b̄′. If each is an
average of n base-map normals, we have

b̄ =
1

n

nX
1

b̃i; b̄′ =
1

n

2nX
n+1

b̃i.

Combining these two to get a new mean bump direction over the
joint 2n base-map normals, we have

1

2n

2nX
1

b̃i =
1

2
b̄ +

1

2
b̄′.
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Figure 7: Problem combining surface shading from distinct bumps.
Each bump defines its own tangent plane, so combining shading
contributions into a new plane is not well defined.

Figure 8: New shading model incorporating bump direction as off-
center Beckmann distributions in the surface tangent plane.

The projected b̃ bump directions combine linearly, so any standard
linear filtering kernel can be used to find the average bump nor-
mal at the center of a new microfacet distribution. This is true
if we use box filtering, summed area tables [Crow 1984], ellip-
tically weighted averaging [Heckbert 1989], Feline [McCormack
et al. 1999], or any other linear filtering method. In particular, stan-
dard MIP level generation and hardware trilinear MIP or anisotropic
texture lookups will all work.

This gives the highlight center, but does not affect its size or shape,
which is controlled by the covariance matrix Σ in Equation (1),

Σ =

»
( 1

n

P
b̃.x2)− b̄.x2 ( 1

n

P
b̃.x b̃.y)− b̄.x b̄.y

( 1
n

P
b̃.x b̃.y)− b̄.x b̄.y ( 1

n

P
b̃.y2)− b̄.y2

–
(2)

Schilling [1997] also used a covariance matrix based model, but
stored an upper-triangular decomposition of the matrix. Neither
the covariance matrix, nor upper-triangular decomposition combine
linearly, but the second moments do, and can be used to reconstruct
the elements of Equation (2) [Olano and North 1997; Donnelly and
Lauritzen 2006]:

1

n

nX
1

b̃.x2;
1

n

nX
1

b̃.x b̃.y;
1

n

nX
1

b̃.y2.

Since these take the same sum-over-microfacets form as b̃, they can
also be stored in a texture and combined with any linear filter ker-

nel. This combination of bump covariances in a common space are
the key to transitioning large scale bump behavior into microfacet
shading behavior.

To summarize, given a bump normal,

N = (~bn.x, ~bn.y, ~bn.z),

the top level of a LEAN map texture is seeded with

B = (b̃n.x, b̃n.y) (3)

M = (b̃n.x2, b̃n.x b̃n.y, b̃n.y2). (4)

Recall that in our notation b̃ is a division by ~b.z. Standard filtered
texture sampling of these five values will give an antialiased and
filtered blend of bumps and specular shading for any view. We can
reconstruct the bump normal for diffuse shading from (b̃.xy, 1).
To save computation and improve the quality of the diffuse filter-
ing, we can instead store the bump normal, N , directly in the three
empty texture slots (assuming two four-element textures). This also
allows diffuse filtering using the un-normalized normal after texture
filtering [Kilgard 2000].

Any method can generate MIP levels (e.g. the driver’s MIP filter
chain), either as a preprocess or per-frame texture generation. Dur-
ing shading, trilinear or anisotropic sampling computes the correct
filtering. Given filtered texture values, B and M (from maps seeded
according to Equations ((3) and (4)), we reconstruct Σ

Σ =

»
M.x−B.x ∗B.x M.y −B.x ∗B.y
M.y −B.x ∗B.y M.z −B.y ∗B.y

–
, (5)

and use it in Equation (1). Though Equation (1) calls for Σ−1, this
is relatively trivial to compute since Σ is only a 2x2 matrix.

3.4 Base Surface Roughness

As with microfacet shading models, the previous section assumes
the top level of the bump map consists of perfect mirror reflectors.
This may be acceptable for environment mapping perfectly shiny
surfaces, but generally we have surfaces with some base roughness.
Han et al. [2007] show that an existing BRDF can be combined
with a normal distribution by convolution. Intuitively, each facet of
the normal distribution contributes its underlying BRDF kernel to
the whole combined distribution. Han et al. use frequency space for
this convolution. Fortunately, the Fourier transform of a Gaussian
is another Gaussian with the inverse variance. Thus (ignoring nor-
malization factors here for compactness) the convolution of a nor-
mal distribution with covariance Σ and shading with Blinn-Phong
exponent s is

e−
1
2 (h̃n−b̃n)T Σ−1(h̃n−b̃n) ⊗ e−

s
2 (h̃n−b̃n)T (h̃n−b̃n).

In frequency space this becomes

e−
1
2 (h̃n−b̃n)T Σ(h̃n−b̃n)e−

1
2s

(h̃n−b̃n)T (h̃n−b̃n)

= e−
1
2 (h̃n−b̃n)T (Σ+ 1

s
I)(h̃n−b̃n).

We don’t actually need to do any computations in frequency space.
We can compute the results of the convolution by just adding 1/s
to the x2 and y2 terms of Σ when computing M in Equation (4):

M = (b̃n.x2 + 1/s, b̃n.x b̃n.y, b̃n.y2 + 1/s). (6)

This has the effect of baking the Blinn-Phong specularity into the
texture. Figure 5(d) shows that this is visually equivalent to the
Blinn-Phong model. Alternately, we can add 1/s during final shad-
ing, when reconstructing Σ by Equation (5).
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Figure 11: Ocean current simulation combining four moving lay-
ers of Gabor noise [Lagae et al. 2009]: (a) Still shot of the water.
Ocean waves follow a clockwise flow around the Atlantic, with sta-
ble antialiasing as we zoom in and out; (b) Flow map used to weight
moving water layers, computed as the curl of a distance map from
the continents. Red and green channels give a flow vector, and lay-
ers are weighted in proportion to their movement direction.

3.5 Combining Layers

In some cases, we want to combine multiple layers of bumps, ei-
ther as an overlayed bump decal, or to support some moving bump
element (ocean waves, shock waves, impact effects, etc.). Since
the texture data is fast enough to create per frame, most situations
where multiple layers of bumps are combined can just do so at the
texture generation time (Figure 9(d),10(d)).

However, there are some cases when it is preferable to combine lay-
ers of bumps at render time. For example, we can create an ocean
water surface with several layers of wave bumps moving in differ-
ent directions. The entire ocean is too big to create a single texture
at sufficient resolution to resolve the waves, but we can repeat a
smaller wave texture across the surface and use a lower-resolution
full ocean current texture to guide the mixing of layers. This allows
global ocean currents (Figure 11), and helps disguise any texture
repeat artifacts with differing mixing ratios (Figure 1).

Given bumps defined by a height field, f(x, y), we can directly
compute the projected bump normal, fbf [Blinn 1978]:

fbf = (−∂f

∂x
,−∂f

∂y
).

For a linear combination of two height fields, f(x, y) and g(x, y)
according to barycentric weights t and u, t + u = 1, this becomes:

b̃ = (−∂(tf + ug)

∂x
,−∂(tf + ug)

∂y
)

= t fbf + u ebg
So to find b̃ for a mix of height fields we just mix the projected
normals. Since we don’t need the height field for the mixing, we
can use the same mixture model for bumps given as normal maps.
Given a mix of b̃’s, either from original height fields or mixed nor-
mal maps, the mixing of second moments is slightly more complex.
The second moments are

b̃.x2 = (t fbf.x + u ebg.x)2

= t2(fbf.x)2 + u2( ebg.x)2 + 2 t u (fbf.x ebg.x) (7)

b̃.y2 = (t fbf.y + u ebg.y)2

= t2(fbf.y)2 + u2( ebg.y)2 + 2 t u (fbf.y ebg.y) (8)

b̃.x b̃.y = (t fbf.x + u ebg.x)(t fbf.y + u ebg.y)

= t2 (fbf.x fbf.y) + u2 ( ebg.x ebg.y)

+ t u (fbf.x ebg.y) + t u ( ebg.x fbf.y),
(9)

The blue terms in Equations (7), (8), and (9) are dependent on f
or g alone, and are already stored as part of the standard LEAN
map. The red terms involve both f and g, for a total of four extra
fg cross terms. Note that these are independent of the mixing ra-
tio between f and g. They can be computed and stored in a third
texture, and just multiplied by the appropriate t u factor for ren-
dering (Figure 9(e),10(e)). If the layers are moving relative to each
other, the mixing textures will need to be recomputed each frame,
but the mixing factors can be varied per pixel during rendering. For
more layers, it is necessary to create these mixing textures for all
pairwise combinations of the base layers, so while two layers need
one mixing texture, three would require three mixing textures, four
would need six, etc.

Rather than create and store all of these mixing textures, we can
approximate them from the components of the f and g’s B textures
at rendering time (Equation (3)). This has the advantage of not re-
quiring any additional textures or texture lookups, and eliminating
all need for per-frame texture construction (Figure 9(f)). It will,
however, produce incorrect results if the layers are coherent and
reinforce or cancel each other enough to affect the overall filtered
bump shading. For example, if f is a set of ridges and g = 1 − f ,
an equal mixing of both should reduce to a smooth surface. Using
this approximation, the near view will still be correct. However, the
distant shading will be anisotropic, since the mixing approximation
cannot distinguish a mixing of two coherent anisotropic bump tex-
tures that reinforce each other from a mixture that cancel each other
out (Figure 10(f)).

This is only a problem for highly correlated bump fields. In our
applications, the cross terms are nowhere near as coherent, nor as
stable, and we are able to use the mixing approximation with no
visible artifacts.

These three solutions cover most bump layer mixing situations. Di-
rect computation during LEAN map generation has the least run-
time overhead, but requires either static maps or per-frame map
generation, and needs sufficient LEAN map resolution (somewhat
defeating the purpose of detail textures or high-resolution decals).
Mixing textures allow per-pixel run-time remixing of textures, but
also need a LEAN map resolution sufficient to cover the mix of
all source bump maps. Finally, the mixing approximation does not
need any additional data, even when mixing LEAN maps of dif-
fering resolutions, but can occasionally suffer artifacts, most com-
monly seen if using the same map (or its inverse) for more than one
layer.

4 Results

LEAN maps work well on a mix of hardware and software. We
have run versions of the LEAN map on a wide variety of platforms,
including an Apple MacBook Pro with OpenGL on an NVIDIA
9600M GT, Windows Vista 64-bit with DirectX 11 on an AMD
Radeon 5870, and DirectX 9 on a range of NVIDIA and ATI cards.
Figure 12 shows some performance data. We compare regular
Blinn-Phong bump mapping, LEAN mapping with a single pre-
computed LEAN map layer, LEAN mapping with the map textures
generated each frame with automatic MIP generation, a mix of two-
layers using precomputed mixture textures, and a mix of two layers
using the mixture approximation. In all cases, the shaders included
ambient and diffuse terms (but no diffuse color texture), and a Fres-
nel modulation of the specular term using the Schlick [1993] ap-
proximation. Frame rates were recorded at 1600x1200 with a sin-
gle object filling the entire screen. Our frame rates of almost 1000
frames per second to over 1500 FPS on modern hardware clearly
show that this is an efficient method, but since it is just one part
of a game shader, frame rates are not too indicative of total perfor-
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Figure 9: Mixing of bump layers. (a,b) Each bump layer alone; (c) equal mixture of a and b at the finest MIP level; (d-f) comparison at
a coarser MIP level (using MIP bias to emphasize differences): (d) mixed as height fields when generating a single LEAN map; (e) using
mixture textures; (f) using mixture approximation. The mixture approximation works well when the layers are not coherent.

(a) (b) (c) (d) (e) (f)

Figure 10: Mixing of coherent bump layers, (sin x) and (− sin x): (a,b) Each bump layer alone; (c) equal mixture of a and b at the finest
MIP level: bumps cancel out to a smooth surface; (d-f) comparison at the coarsest MIP level (using MIP bias to emphasize differences):
(d) mixed as height fields when generating a single LEAN map; (e) using mixture textures; (f) using mixture approximation. The mixture
approximation gets an elongated highlight from the anisotropy of the underlying layers.

Figure 13: Anisotropic bump pattern as a model moves away.

mance. We also provide Direct3D instruction counts, in ALU and
texture instructions for each. These correspond to between 6 and
12 cycles for each shader.

All images in this paper have an isotropic base roughness, with
specular exponents ranging 128 to about 14, 000. Any shading
anisotropy is derived from the bumps themselves. Figure 2(d-f)
show an isotropic bump distribution turning into a more diffuse
highlight. Figure 2(a-c) show the same model with an anisotropic
bump pattern. Figure 13 shows the same bump pattern at natural
scale, showing antialiasing and filtering.

Figure 14 shows antialiasing of a raised checker pattern. Notice the
significant distance aliasing in the unfiltered version. In the trilin-
ear MIP-filtered version, the aliasing is gone, and there is some
checker-aligned distant highlight spread, but the elongated main
highlight diffuses out a little early. The anisotropic-filtered ver-
sion fixes the over-blurring of the main highlight while retaining
the other filtering advantages.

Figure 1 shows a two-layer LEAN map ocean in a game currently
under development. The ocean consists of two bump layers mov-
ing in different directions. The main highlight is just off-screen to

(a) (b)

(c) (d)

Figure 14: Bump antialiasing on a raised checker grid: (a)
“ground truth” computed with 64x supersampling and a Gaus-
sian pixel reconstruction filter; (b) ordinary bump maps, exhibit-
ing significant highlight aliasing; (c) LEAN mapping with trilinear
MIP filtering, fixes the bump aliasing and exhibits checker-aligned
anisotropic shading; (d) LEAN mapping with hardware anisotropic
texturing, fixes some over-blurring of the primary highlight.

the right, but peripheral highlights are visible as glints on the wa-
ter. The artist-selected base specular power is 13,777, added to the
covariance at run-time rather than folded directly into the LEAN
map. The 16-bit LEAN maps are generated at load time from source
height-maps with render-to-texture passes using an 8-tap Sobel fil-
ter to estimate the per-layer height-field gradients.
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Blinn-Phong Single LEAN map Per-frame generation Mixture textures Mixture approx.

ATI Radeon HD 5870 1570 FPS 1540 FPS 917 FPS 1450 FPS 1458 FPS

D3D instructions 30 ALU + 1 tex 42 ALU + 2 tex gen: 8 ALU + 1 tex 54 ALU + 5 tex 54 ALU + 4 texuse: 42 ALU + 2 tex

Figure 12: Performance comparison. Frames per second were recorded at 1600x1200 full screen with all pixels covered. Instruction counts
are as reported by the Direct3D HLSL compiler with the pixel shader 3.0 profile.

/ / unpack normal
f l o a t 3 t n = tex2D ( normalMap , coord ) ;
f l o a t 3 N = f l o a t 3 (2∗ t n . xy−1, t n . z ) ;

/ / compute B and M by E q u a t i o n s ( 3 ) and ( 6 )
/ / s c i s a s c a l e f a c t o r mapping B t o −1 t o 1
f l o a t 2 B = N . xy / ( s c∗N . z ) ;
f l o a t 3 M = f l o a t 3 (B . x∗B . x +1 /s ,B . y∗B . y +1 /s ,B . x∗B . y ) ;

/ / pack i n t o LEAN map r e n d e r t a r g e t s
o u t p u t . l e a n 1 = f l o a t 4 ( tn , . 5∗M . z + . 5 ) ;
o u t p u t . l e a n 2 = f l o a t 4 ( . 5∗B + . 5 , M . xy ) ;

Figure 15: Code fragment to render top-level LEAN map textures
from an existing normal map.

/ / unpack normal
f l o a t 4 t 1 = tex2D ( lean1 , t e x c o o r d ) ;
f l o a t 3 N = f l o a t 3 (2∗ t 1 . xy−1, t 1 . z ) ;

/ / unpack B and M
f l o a t 4 t 2 = tex2D ( lean2 , t e x c o o r d ) ;
f l o a t 2 B = (2∗ t 2 . xy−1)∗ sc ;
f l o a t 3 M = f l o a t 3 ( t 2 . zw ,2∗ t 1 . w−1)∗ sc∗ sc ;

/ / c o n v e r t M t o Σ by Eq u a t i o n ( 5 )
f l o a t 3 Σ = M − f l o a t 3 (B∗B , B . x∗B . y ) ;
f l o a t 3 Det = Σ . x∗Σ . y − Σ . z∗Σ . z ;

/ / compute s p e c u l a r by E q u a t i o n ( 1 )
f l o a t 2 h̃ = ~h . xy /~h . z − B ;
f l o a t e = ( h̃ . x∗h̃ . x∗Σ . y + h̃ . y∗h̃ . y∗Σ . x − 2 .∗ h̃ . x∗h̃ . y∗Σ . z ) ;
f l o a t spec = ( Det <=0) ? 0 . : exp (−.5∗ e / Det ) / s q r t ( Det ) ;

Figure 16: Run-time LEAN mapping pseudo-code fragment.

5 Implementation

Figure 15 shows a code fragment to generate a LEAN map from
a source normal map. The code includes a scale factor, sc, that
can be used to avoid overflow and loss of precision. It should be
chosen so B will fill, but not overflow, the -1 to 1 range. For 8-bit
texture components, the choice of sc is critical to avoid numeri-
cal problems, but for 16-bit it is sufficient to just choose a factor
that avoids texture overflow. This code fragment is most of the
complete shader, missing only input and output declarations and
function declaration. This code is used on a quad to generates two
texture render targets that are the top level of the LEAN map. Af-
ter running this pass, either a standard user or driver-provided MIP
generation fills in the remaining levels of the maps.

Figure 16 shows a code fragment to use the resulting LEAN maps.
This code uses mathematical symbols to match notation from Fig-
ure 3, but otherwise is stock HLSL. The code fragment shown only
computes the specular term for one light. Additional lights would
just repeat the final three lines of the fragment. In use, this frag-
ment should to be combined with base surface color textures, dif-
fuse shading and a Fresnel term.

6 Limitations

Like other Beckmann distribution-based shading models, LEAN
mapping can only capture one direction of anistropy. It cannot
capture the bi-modal distribution of a set of sharp V groves, or
the two principal directions of anistropy aligned with the threads
of woven materials like particularly shiny cloth. For such models,
a method like Frequency Domain Normal Map Filtering might be
better suited [Han et al. 2007]. We find this limitation acceptable in
exchange for the speed and simplicty of LEAN mapping, the large
variety of materials it does support, and the compatibility with the
existing art pipeline.

None of the options for combining bump layers is ideal, though the
three methods we present together handle most cases. For fastest
operation when the layers’ bumps are not highly correlated with
each other, the mixing approximation works well. For layers, in-
cluding coherent layers, that do not move relative to each other
but may have changing per-pixel mixing ratios, the mixing textures
work well. Neither of these options need to update the LEAN maps
every frame, so maps can be generated in a preprocess or on level
load. If neither case applies, or if the layer blending function con-
tains high enough frequencies to introduce its own bumps, we can
still generate a fully mixed LEAN map every frame.

We often use specular powers, s, in the order of 256 up to 10 −
20, 000. It is rare to use powers over 64 for ordinary bump map-
ping due to the severe aliasing problem, but LEAN mapping allows
even extremely high specular powers. Since one bit change in an
8-bit texture component is 1/256, we require 16-bit components to
keep sufficient precision. With careful normalization into a 0-1 tex-
ture range, it is still possible use 8-bit textures and incorporate the
constant 1/s factor at shading time. In this case, there will be some
change in highlight shape at the base level due to rounding errors
in the covariance reconstruction. Figures 2, 9(c,d) and 10(c,d), and
13 all use 8-bit LEAN maps, all other figures use 16-bit. In gen-
eral, 8-bit textures only make sense if absolutely needed for speed
or space.

7 Conclusion

We have presented LEAN mapping as a unified shading model rep-
resenting both bump orientation and BRDF, with textures contain-
ing the 2D mean and second moment matrix of a Gaussian distri-
bution in a projection plane defined by the underlying surface. This
representation is easy enough to construct on the fly, or as a pre-
process from either height-field or normal based bump maps. The
terms combine linearly, so work with any standard texture filtering
approach, including hardware-accelerated MIP pyramid construc-
tion, trilinear MIP sampling and anisotropic filtering. We show
how existing Blinn-Phong or Beckmann-distribution based shad-
ing models can be adapted to the new model, to produce visually
equivalent results when filtering is not necessary, but correct filter-
ing and antialiasing when it is needed. Effective bump antialiasing
allows high specular powers of 10,000 or more. The low texture and
computational overhead, along with the Blinn-Phong compatibility
significantly eases adoption in an existing game art pipeline. Fi-
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nally, we show three methods for mixing layers of bumps, allowing
time-varying or spatially-varying flow, decals, and detail texture.
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