
Exercise 6

Transactions

Isolation

Concurrency means trouble

 Several processes
manipulating the
same data at the
same time can lead
to inconsistencies

Transactions

 START TRANSACTION

 COMMIT/ROLLBACK

 Atomic: Either the
whole transaction is
run, or nothing.

 Consistent: Database
constraints are
preserved.

 Isolated: Different
transactions may not
interact with each
other.

 Durable: Effects of a
transaction are not
lost in case of a
system crash.

Serializability

 If the outcome of a
number of
transactions is
equal to the
outcome of the
transactions
executed without
time overlap

To run transactions serially

…would solve the problem…

…but is often practically impossible

Therefore we use different isolation
levels

Locks

 To achieve different levels
of isolation, you can use
locks

 Shared (read) lock

 Exclusive (write) lock

 Locks are put on relevant
parts of the data

 Lock requests are queued

Lock compatibility

LOCK Write Read

Write No No

Read No Yes

Isolation 0 – read uncommitted

Does not ask for read lock

Therefore it can read data that
another transaction has a write lock
on

 ”Dirty reads” – data modified by
another transaction, but not yet
committed

Isolation 1 – read committed

 Asks for read lock,
but releases it
after reading

 ”Non-repeatable
reads” – the same
query can give
different results

Isolation 2 – repeatable read

 If a query has a
WHERE clause
spanning a range, a
read lock is acquired
only for the result, not
the entire range (no
range lock)

 The result can’t be
changed, but new
data can be added –
so called ”Phantoms”

T1 T2

SELECT *
FROM users
WHERE age
BETWEEN 10
AND 30;

INSERT INTO
users VALUES
(3, 'Bob', 27);
COMMIT;

SELECT *
FROM users
WHERE age
BETWEEN 10
AND 30;

Isolation 3 - serializable

No other transactions are allowed to
interact with the data

Range locks are used

All locks collected are kept until after
COMMIT

None of this is of course true…

…at least not in ORACLE

Different approaches

”Pessimistic”

 ”We’d better make
sure nothing funny is
going on”

 Locks

”Optimistic”

 ”If something funny is
going on, we can take
care of that later”

 Check before COMMIT
that everything is in
order, otherwise abort

Which is better?

Optimistic approach never blocks
concurrent transactions

But if conflicts happen often, the cost
for aborting will be high

How to do it? (1st example)

Timestamp ordering

 Every transaction
is given a
timestamp Tt

 Every object has
two timestamps

– Last read Tr

– Last write Tw

 Read is only
allowed if Tt>Tw,
otherwise abort

– Set Tr=Tt

 Write is only
allowed if Tt>Tr ,
otherwise abort

– Set Tw=Tt

– SKIP write if Tt<Tw!
(Thomas write rule)

How to do it? (2nd example)

Multiversion concurrency control
 Several timestamped versions of data exist

 If Tt>Tw the transaction can pick an older version
to read, and does not have to abort (p 940)

 ORACLE uses something called Snapshot
Isolation, based on MVCC

 A simple way to think of Oracle read consistency
is to imagine each user operating a private copy
of the database

Not even the locks are that

simple…

