
Exercise 6

Transactions

Isolation

Concurrency means trouble

 Several processes
manipulating the
same data at the
same time can lead
to inconsistencies

Transactions

 START TRANSACTION

 COMMIT/ROLLBACK

 Atomic: Either the
whole transaction is
run, or nothing.

 Consistent: Database
constraints are
preserved.

 Isolated: Different
transactions may not
interact with each
other.

 Durable: Effects of a
transaction are not
lost in case of a
system crash.

Serializability

 If the outcome of a
number of
transactions is
equal to the
outcome of the
transactions
executed without
time overlap

To run transactions serially

…would solve the problem…

…but is often practically impossible

Therefore we use different isolation
levels

Locks

 To achieve different levels
of isolation, you can use
locks

 Shared (read) lock

 Exclusive (write) lock

 Locks are put on relevant
parts of the data

 Lock requests are queued

Lock compatibility

LOCK Write Read

Write No No

Read No Yes

Isolation 0 – read uncommitted

Does not ask for read lock

Therefore it can read data that
another transaction has a write lock
on

 ”Dirty reads” – data modified by
another transaction, but not yet
committed

Isolation 1 – read committed

 Asks for read lock,
but releases it
after reading

 ”Non-repeatable
reads” – the same
query can give
different results

Isolation 2 – repeatable read

 If a query has a
WHERE clause
spanning a range, a
read lock is acquired
only for the result, not
the entire range (no
range lock)

 The result can’t be
changed, but new
data can be added –
so called ”Phantoms”

T1 T2

SELECT *
FROM users
WHERE age
BETWEEN 10
AND 30;

INSERT INTO
users VALUES
(3, 'Bob', 27);
COMMIT;

SELECT *
FROM users
WHERE age
BETWEEN 10
AND 30;

Isolation 3 - serializable

No other transactions are allowed to
interact with the data

Range locks are used

All locks collected are kept until after
COMMIT

None of this is of course true…

…at least not in ORACLE

Different approaches

”Pessimistic”

 ”We’d better make
sure nothing funny is
going on”

 Locks

”Optimistic”

 ”If something funny is
going on, we can take
care of that later”

 Check before COMMIT
that everything is in
order, otherwise abort

Which is better?

Optimistic approach never blocks
concurrent transactions

But if conflicts happen often, the cost
for aborting will be high

How to do it? (1st example)

Timestamp ordering

 Every transaction
is given a
timestamp Tt

 Every object has
two timestamps

– Last read Tr

– Last write Tw

 Read is only
allowed if Tt>Tw,
otherwise abort

– Set Tr=Tt

 Write is only
allowed if Tt>Tr ,
otherwise abort

– Set Tw=Tt

– SKIP write if Tt<Tw!
(Thomas write rule)

How to do it? (2nd example)

Multiversion concurrency control
 Several timestamped versions of data exist

 If Tt>Tw the transaction can pick an older version
to read, and does not have to abort (p 940)

 ORACLE uses something called Snapshot
Isolation, based on MVCC

 A simple way to think of Oracle read consistency
is to imagine each user operating a private copy
of the database

Not even the locks are that

simple…

