
1

Database Indexes

Quiz!

How costly is this operation (naive solution)?

SELECT *

FROM Lectures

WHERE course = ’TDA356’

AND period = 2;

course per weekday hour room

TDA356 2 VR Monday 13:15

TDA356 2 VR Thursday 08:00

TDA356 4 HB1 Tuesday 08:00

TDA356 4 HB1 Friday 13:15

TIN090 1 HC1 Wednesday 08:00

TIN090 1 HA3 Thursday 13:15

n

Go through all n rows, compare
with the values for course and
period = 2n comparisons

Quiz!

Can you think of a way to make it faster?

SELECT *

FROM Lectures

WHERE course = ’TDA356’

AND period = 2;

If rows were stored sorted according to the values

course and period, we could get all rows with the
given values faster (O(log n) for tree structure).

Storing rows sorted is expensive, but we can use

an index that given values of these attributes
points out all sought rows (an index could be a
hash map, giving O(1) complexity to lookups).

Index

• When relations are large, scanning all
rows to find matching tuples becomes very
expensive.

• An index on an attribute A of a relation is a
data structure that makes it efficient to find
those tuples that have a fixed value for
attribute A.
– Example: a hash table gives amortized O(1)

lookups.

Quiz!

Asymptotic complexity (O(x) notation) is
misleading here. Why?

The asymptotic complexity works for data structures in main

memory. But when working with stored persistent data, the
running time of the data structure, once in main memory, is
negligible compared to the time it takes to read data from

disk. What really matters to get fast lookups in a database is
to minimize the number of disk blocks accessed (could use
asymptotic complexity over disk block accessing though).

Indexes help here too though. If a relation is stored over a
number of disk blocks, knowing in which of these to look is

helpful.

Typical costs

• Some typical costs of disk accessing for
database operations on a relation stored
over n blocks:
– Query the full relation: n (disk operations)

– Query with the help of index: k, where k is the
number of blocks pointed to (1 for key).

– Access index: 1

– Insert new value: 2 (one read, one write)

– Update index: 2 (one read, one write)

2

Example:

SELECT *

FROM Lectures

WHERE course = ’TDA356’

AND period = 2;

Assume Lectures is stored in n disk blocks. With no
index to help the lookup, we must look at all rows,

which means looking in all n disk blocks for a total
cost of n.

With an index, we find that there are 2 rows with the
correct values for the course and period attributes.

These are stored in two different blocks, so the total
cost is 3 (2 blocks + reading index).

Quiz!

How costly is this operation?

SELECT *

FROM Lectures, Courses

WHERE course = code;

Go through all n blocks in Lectures,

compare the value for course from
each row with the values for code in
all rows of Courses, stored in all m

blocks. The total cost is thus n * m
accessed disk blocks.

Lectures: n disk blocks

Courses: m disk blocks

Index on code in Courses:No index:

Go through all n blocks in Lectures,

compare the value for course from
each row with the index. Since
course is a key, each value will exist

at most once, so the cost is 2 * n + 1

accessed disk blocks (1 for fetching
the index once).

CREATE INDEX

• Most DBMS support the statement
CREATE INDEX index name

ON table (attributes);

– Example:

– Statement not in the SQL standard, but most
DBMS support it anyway.

– Primary keys are given indexes implicitly (by
the SQL standard).

CREATE INDEX courseIndex

ON Courses (code);

Important properties

• Indexes are separate data stored by itself.
� Can be created

�on newly created relations

�on existing relations

- will take a long time on large relations.

� Can be dropped without deleting any table data.

• SQL statements do not have to be

changed

– a DBMS automatically uses any indexes.

Quiz!

Why don’t we have indexes on all attributes for

faster lookups?

– Indexes require disk space.

– Modifications of tables are more expensive.

• Need to update both table and index.

– Not always useful

• The table is very small.

• We don’t perform lookups over it (Note: lookups ≠ queries).

– Using an index costs extra disk block accesses.

Rule of thumb

• Mostly queries on tables – use indexes for
key attributes.

• Mostly updates – be careful with indexes!

3

Quiz!

Assume we have an index on Lectures for (course,

period, weekday) which is the key. How costly

are these queries?

SELECT *

FROM Lectures

WHERE course = ’TDA356’

AND period = 2;

Lectures: n disk blocks

SELECT *

FROM Lectures

WHERE weekday = ’Monday’

AND room = ’VR’;

A multi-attribute index is typically organized hierarchically. First the

rows are indexed according to the first attribute, then according to
the second within each group, and so on.
Thus the left query costs at most k + 1 where k is the number of

rows matching the values. The right query can’t use the index, and
thus costs n, where n is the size of the relation in disk blocks.

Example: Suppose that the Lectures relation is
stored in 20 disk blocks, and that we typically
perform three operations on this table:
– insert new lectures (Ins)
– list all lectures of a particular course (Q1)

– list all lectures in a given room (Q2)

Let’s assume that in an average week there are:
– 2 lectures for each course, and

– 10 lectures in each room.

Let’s also assume that
– each course has lectures stored in 2 blocks, and

– each room has lectures stored in 7 (some lectures are
stored in the same block).

Example continued:

The amortized cost depends on the distribution of the operations. p1 is
proportion of operations that are Q1 queries, p2 similarly for Q2, and thus the
proportion of operations that are Ins modifications is 1 – p1 – p2. For some
different values of p1 and p2 we get actual costs of:

6 – 3p1 + 2p24 + 16p1 + 4p24 – p1 + 16p22 + 18p1 + 18p2cost

882020Q2

320320Q1

6442Ins

Both indexes
Index for

room

Index for

(course, period, weekday)
No indexIndexes

2 + 18p1 + 18p2 4 – p1 + 16p2 4 + 16p1 + 4p2 6 – 3p1 + 2p2

p1 = p2 = 0.4 16.4 10 12 5.6

p1 = p2 = 0.1 5.6 5.5 6 5.9

p1 = 0.6, p2 = 0.3 18.2 8.2 14.8 4.8

Insert new lectures (Ins)

List all lectures of a particular course (Q1)
List all lectures in a given room (Q2) Dense index on sequential file

KBB056

KMB017

TDA357

TMS145

UMF012

UMF018

KBB056 KC Monday 08

KMB017 MVH12 Tuesday 08

KMB017 MVH12 Wednesday 15

TDA357 HA4 Monday 10

TDA357 HB1 Thursday 10

TMS145 KC Friday 08

UMF012 MVF23 Friday 13

UMF012 MVF23 Monday 13

UMF018 MVF23 Tuesday 10

Sparse index on sequential file

KBB056

TDA357

UMF012

KBB056 KC Monday 08

KMB017 MVH12 Tuesday 08

KMB017 MVH12 Wednesday 15

TDA357 HA4 Monday 10

TDA357 HB1 Thursday 10

TMS145 KC Friday 08

UMF012 MVF23 Friday 13

UMF012 MVF23 Monday 13

UMF018 MVF23 Tuesday 10

Multi-level indexes

Outer index Inner index

index

block 0

index

block 1

data

block 0

data

block 1

4

Secondary index on room name

HA4

HB1

KC

MVF23

MVH12

KBB056 KC Monday 08

KMB017 MVH12 Tuesday 08

KMB017 MVH12 Wednesday 15

TDA357 HA4 Monday 10

TDA357 HB1 Thursday 10

TMS145 KC Friday 08

UMF012 MVF23 Friday 13

UMF012 MVF23 Monday 13

UMF018 MVF23 Tuesday 10

Quiz!

• Indexes are incredibly useful (although they are
not part of the SQL standard).

• Doing it wrong is costly.

• Requires knowledge about the internals of a
DBMS.
– How is data stored? How large is a block?

• A DBMS should be able to decide better than
the user what indexes are needed, from usage
analysis.

So why don’t they??

Summary – indexes

• Indexes make certain lookups and joins more
efficient.
– Disk block access matters.

– Multi-attribute indexes

• CREATE INDEX

• Dense, sparse, multi-level and secondary

• Usage analysis
– What are the expected operations?

– How much do they cost?

Σ(cost of operation)x(proportion of operations of that kind)

