
1

XML

Semistructured data

XML, DTD, (XMLSchema)

XPath, XQuery

Quiz!
Assume we have a single course (Databases) that is the

exception to the rule in that it has two responsible
teachers (Niklas Broberg, Rogardt Heldal) when given in
the 2nd period. How can we model this?

1. Allow all courses to have two teachers. We extend the
GivenCourses table with another attribute teacher2, and
put NULL there for all other courses.

2. Allow courses to have any number of teachers. We
create a separate table Teaches with attributes course,
period and teacher, and make all three be the key.

1 means lots of NULLs, 2 means we must introduce a new table.
Seems overkill for such an easy task…

Example: A different way of thinking about data…

Courses

db
alg

p2
p4

p1
138

Niklas Broberg

Rogardt Heldal

120

Rogardt Heldal

68

Devdatt Dubhashi

Algorithms

Databases

TDA357 TIN090

2

4

1

course course
code

name

givenIn

period

teacher

nrStudents

code

name

givenIn

period

teacher

nrStudentsnrStudents

period

teacher

teacher

givenIn

Semi-structured data (SSD)

• More flexible data model than the
relational model.

– Think of an object structure, but with the type
of each object its own business.

– Labels to indicate meanings of substructures.

• Semi-structured: it is structured, but not
everything is structured the same way!

SSD Graphs

• Nodes = ”objects”, ”entities”

• Edges with labels represent attributes or
relationships.

• Leaf nodes hold atomic values.

• Flexibility: no restriction on

– Number of edges out from a node.

– Number of edges with the same label

– Label names

Example again:

Courses

db
alg

p2
p4

p1
138

Niklas Broberg

Rogardt Heldal

120

Rogardt Heldal

68

Devdatt Dubhashi

Algorithms

Databases

TDA357 TIN090

2

4

1

course course
code

name

givenIn

period

teacher

nrStudents

code

name

givenIn

period

teacher

nrStudentsnrStudents

period

teacher

teacher

givenIn

The ”entity”
representing the

Algorithms course

Its code attribute

No restriction on the
number of edges with

the label ”teacher”

2

Relationships in SSD graphs

• Relationships are marked by edges to some
node, that doesn’t have to be a child node.
– This means a SSD graph is not a tree, but a true

graph.

– Cyclic relationships possible.

• Using relationships, it is possible to directly
mimic the behavior of the relational model.
– Graph is three levels deep – one for a relation, the

second for its contents, the third for the attributes.

– References are inserted as relationship edges.

• SSD is a generalization of the relational model!

Example:

c gc l r

db

alg

db2

db4

db2mo

db2th

vr

hb1

Scheduler

TDA357

TIN090

Databases

Algorithms

Niklas Broberg

4

Rogardt Heldal

Monday

Thursday

2

13:15

VR

HB1

10:00 184

216

Courses

GivenCourses Lectures
Rooms

Course Course

code name

code

name

teacher
period

teacher

period

GivenCourse

GivenCourse Lecture

Lecture

weekday

weekday

hour

hour

Room

Room

name

name

nrSeats

nrSeats

138

nrStudents

93

nrStudents

isCourse

isCourse

lectureIn

lectureIn

inRoom

inRoom

Schemas for SSD

• Inherently, semi-structured data does not
have schemas.

– The type of an object is its own business.

– The schema is given by the data.

• We can of course restrict graphs in any
way we like, to form a kind of ”schema”.

– Example: All ”course” nodes must have a
”code” attribute.

XML

• XML = eXtensible Markup Language

• Derives from document markup
languages.
– Compare with HTML: HTML uses ”tags” for

formatting a document, XML uses ”tags” to
describe semantics.

• Key idea: create tag sets for a domain,
and translate data into properly tagged
XML documents.

XML vs SSD

• XML is a language that describes data and
its structure.

– Cf. relational data: SQL DDL + data in tables.

• The data model behind XML is semi-
structured data.

– Using XML, we can describe an SSD graph
as a tagged document.

Example XML document:

<Scheduler>

<Courses>

<Course code=”TDA357” name=”Databases>

<GivenIn

nrStudents=”138”

teacher=”Niklas Broberg”>2</GivenIn>

<GivenIn

nrStudents=”93”

teacher=”Rogardt Heldal”>4</GivenIn>

</Course>

</Courses>

</Scheduler>

A node is
represented

by an element
marked by a
start and an

end tag.

Child nodes are represented
by child elements inside the

parent element.

Leaf nodes with values
can be represented as

either attributes…

… or as element
data

Note that XML is case sensitive!

3

XML explained

• An XML element is denoted by surrounding tags:
<Course>...</Course>

• Child elements are written as elements between the tags
of its parent, as is simple string content:
<Course><GivenIn>2</GivenIn></Course>

• Attributes are given as name-value pairs inside the
starting tag:
<Course code=”TDA357”>…</Course>

• Elements with no children can be written using a short-
hand:
<Course code=”TDA357” />

Example again:

<Scheduler>

<Courses>

<Course code=”TDA357” name=”Databases>

<GivenIn

nrStudents=”138”

teacher=”Niklas Broberg”>2</GivenIn>

<GivenIn

nrStudents=”93”

teacher=”Rogardt Heldal”>4</GivenIn>

</Course>

</Courses>

</Scheduler>

Note that XML is case sensitive!

Starting tags
of elements

Attributes

Child elements
inside the parents

String content
(CDATA)

XML namespaces

• XML is used to describe a multitude of
different domains. Many of these will work
together, but have name clashes.

• XML defines namespaces that can
disambiguate these circumstances.

– Example:

<sc:Scheduler

xmlns:sc=”http://www.cs.chalmers.se/~dbas/xml”

xmlns:www=”http://www.w3.org/xhtml”>

<sc:Course code=”TDA357” sc:name=”Databases”

www:name=”dbas” />

</sc:Scheduler>

Use xmlns to bind namespaces to
variables in this document.

Quiz!

What’s wrong with this XML document?

<Course code=”TDA357”>

<GivenIn period=”2” >

<GivenIn period=”4” >

</Course>

No end tags provided for the GivenIn elements!
We probably meant e.g. <GivenIn … />

What about the name of the course? Teachers?

Well-formed and valid XML

• Well-formed XML directly matches semi-
structured data:

– Full flexibility – no restrictions on what tags
can be used where, how many, what
attributes etc.

– Well-formed means syntactically correct.

• E.g. all start tags are matched by an end tag.

• Valid XML involves a schema that limits
what labels can be used and how.

Well-formed XML

• A document must start with a declaration,
surrounded by <? … ?>

– Normal declaration is:

… where standalone means basically ”no schema
provided”.

• Structure of a document is a root element
surrounding well-formed sub-documents.

<?xml version=”1.0” standalone=”yes” ?>

4

DTDs

• DTD = Document Type Definition

• A DTD is a schema that specifies what
elements may occur in a document, where
they may occur, what attributes they may
have, etc.

• Essentially a context-free grammar for
describing XML tags and their nesting.

Basic building blocks

• ELEMENT: Define an element and what children
it may have.
– Children use standard regexp syntax: * for 0 or more,
+ for 1 or more, ? for 0 or 1, | for choice, commas for

sequencing.

– Example:

• ATTLIST: Define the attributes of an element.

– Example:

– Course elements are required to have an attribute
code of type CDATA (string).

<!ELEMENT Courses (Course*)>

<!ATTLIST Course

code CDATA #REQUIRED>

Example: Part of a DTD for the Scheduler domain

<!DOCTYPE Scheduler [

<!ELEMENT Scheduler (Course*)>

<!ELEMENT Course (GivenIn*)>

<!ELEMENT GivenIn (#PCDATA)>

<!ATTLIST Course

code CDATA #REQUIRED

name CDATA #REQUIRED

>

<!ATTLIST GivenIn

teacher CDATA #IMPLIED

nrStudents CDATA ”0”

>

]>

A Scheduler element can have 0 or
more Course elements as children.

PCDATA means Character
Data, i.e. a string. DTDs have
(almost) no other base types.

These attributes must be set…
(Cf. NOT NULL)

…but not this one.

Default value is 0

Quiz: If we want courses to be
able to have more than one
teacher, what could we do?

One suggestion is to make a ”Teacher”
element with PCDATA content, and allow
GivenIn elements to have 1 or more of
those as children. Period could be an
attribute instead.

Non-tree structures

• DTDs allow references between elements.

– The type of one attribute of an element can be
set to ID, which makes it unique.

– Another element can have attributes of type
IDREF, meaning that the value must be an ID
in some other element.

<!ATTLIST Room

name ID #REQUIRED>

<!ATTLIST Lecture

room IDREF #IMPLIED>

<Scheduler>

… <Room name=”VR” … />

… <Lecture room=”VR” … />

</Scheduler>

<?xml version=”1.0”

encoding=”utf-8”

standalone=”no” ?>

<!DOCTYPE Scheduler [

<!ELEMENT Scheduler

(Courses,Rooms)>

<!ELEMENT Courses (Course*)>

<!ELEMENT Rooms (Room*)>

<!ELEMENT Course (GivenIn*)>

<!ELEMENT GivenIn (Lecture*)>

<!ELEMENT Lecture EMPTY>

<!ELEMENT Room EMPTY>

<!ATTLIST Course

code ID #REQUIRED

name CDATA #REQUIRED >

<!ATTLIST GivenIn

period CDATA #REQUIRED

teacher CDATA #IMPLIED

nrStudents CDATA ”0” >

<!ATTLIST Lecture

weekday CDATA #REQUIRED

hour CDATA #REQUIRED

room IDREF #IMPLIED >

<!ATTLIST Room

name ID #REQUIRED

nrSeats CDATA #IMPLIED >

]>

<Scheduler>

<Courses>

<Course code=”TDA357”

name=”Databases”>

<GivenIn period=”2”

teacher=”Niklas Broberg”

nrStudents=”138”>

<Lecture weekday=”Monday”

hour=”13:15” room=”VR” />

<Lecture weekday=”Thursday”

hour=”10:00” room=”HB1” />

</GivenIn>

<GivenIn period=”4”

teacher=”Rogardt Heldal”>

</GivenIn>

</Course>

</Courses>

<Rooms>

<Room name="VR" nrSeats="216"/>

<Room name="HB1" nrSeats="184"/>

</Rooms>

</Scheduler>

Beginning of document with DTD Document body

courses.xml (a smaller example)
<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

<!DOCTYPE Courses [

<!ELEMENT Courses (Course*)>

<!ELEMENT Course (GivenIn*)>

<!ELEMENT GivenIn EMPTY>

<!ATTLIST Course

code ID #REQUIRED

name CDATA #REQUIRED >

<!ATTLIST GivenIn

period CDATA #REQUIRED

teacher CDATA #IMPLIED >

]>

<Courses>

<Course name="Databases" code="TDA357">

<GivenIn period="2" teacher="Niklas Broberg" />

<GivenIn period="4" teacher="Rogardt Heldal" />

</Course>

<Course name="Algorithms" code="TIN090">

<GivenIn period="1" teacher="Devdatt Dubhashi" />

</Course>

</Courses>

5

Quiz!

What’s wrong with DTDs?

• Only one base type – CDATA.

• No way to specify constraints on data other than
keys and references.

• No way to specify what elements references may
point to – if something is a reference then it may
point to any key anywhere.

• …

XML Schema

• Basic idea: why not use XML to define schemas
of XML documents?

• XML Schema instances are XML documents
specifying schemas of other XML documents.

• XML Schema is much more flexible than DTDs,
and solves all the problems listed and more!

• DTDs are still the standard – but XML Schema is
the recommendation (by W3)!

Example: fragment of an XML Schema:
<?xml version="1.0"?>

<schema xmlns="http://www.w3.org/2001/XMLSchema”>

<element name=”Course”>

<complexType>

<attribute name=”code” use=”required” type=”string”>

<attribute name=”name” use=”required” type=”string”>

<sequence>

<element name=”GivenIn” maxOccurs=”4”>

<complexType>

<attribute name=”period” use=”required”>

<simpleType>

<restriction base=”integer”>

<minInclusive value=”1” />

<maxInclusive value=”4” />

</restriction>

</simpleType>

</attribute>

<attribute name=”teacher” use=”optional” type=”string” />

<attribute name=”nrStudents” use=”optional” type=”integer” />

<sequence>...</sequence>

</complexType>

</element>

</sequence>

</complexType>

</element>

</schema>

Value constraint:
Period must be an

integer, restricted to
values between 1
and 4 inclusive.

Multiplicity constraint:
A course can only be

given at most four
times a year.

We can have keys and references as
well, and any general assertions (though
they can be tricky to write correctly).

XML query languages

XPath
XQuery

XPath

• XPath is a language for describing paths
in XML documents.
– Think of an SSD graph and its paths.

• Path descriptors are similar to path
descriptors in a (UNIX) file system.
– A simple path descriptor is a sequence of

element names separated by slashes (/).

– / denotes the root of a document.

– // means the path can start anywhere in the
tree from the current node.

Examples:

<Courses>

<Course name=”Databases” code=”TDA357”>

<GivenIn period=”2” teacher=”Niklas Broberg” />

<GivenIn period=”4” teacher=”Rogardt Heldal” />

</Course>

<Course name=”Algorithms” code=”TIN090”>

<GivenIn period=”1” teacher=”Devdatt Dubhashi” />

</Course>

</Courses>

/Courses/Course/GivenIn will return the set of all
GivenIn elements in the document.

//GivenIn will return the same set, but only since we know by
our schema that GivenIn elements can only appear in that

position.

/Courses will return the document as it is.

6

More path descriptors

• There are other path descriptors than / and //:
– * denotes any one element:

• /Courses/*/* will give all children of all children of a
Courses element, i.e. all GivenIn elements.

• //* will give all elements anywhere.

– . denotes the current element:
• /Courses/Course/. will return the same elements as
/Courses/Course

– .. denotes the parent element:
• //GivenIn/.. will return all elements that have a
GivenIn element as a child.

• Think about how we can traverse the graph –
upwards, downwards, along labelled edges etc.

Attributes

• Attributes are denoted in XPath with a @

symbol:

– /Courses/Course/@name will give the

names of all courses.

Quiz: For the Scheduler example, what will
the path expression //@name result in?

The names of all courses, and the names of all rooms.

Axes

• The various directions we can follow in a
graph are called axes (sing. axis).

• General syntax for following an axis is

– Example: /Courses/child::Course

• Only giving a label is shorthand for
child::label, while @ is short for
attribute::

axis::

More axes

• Some other useful axes are:

– parent:: = parent of the current node.
• Shorthand is ..

– descendant-or-self:: = the current node(s) and all
descendants (i.e. children, their children, …) down
through the tree.

• Shorthand is //

– ancestor::, ancestor-or-self = up through the tree

– following-sibling:: = any elements on the same level
that come after this one.

– …

Selection

• We can perform tests in XPath
expressions by placing them in square
brackets:
– /Courses/Course/GivenIn[@period = 2] will

give all GivenIn elements that regard the second

period.

Quiz: What will the path expression
/Courses/Course[GivenIn/@period = 2]

result in?

All Course elements that are given in the second period (but for each
of those, all the GivenIn elements for that course).

Quiz!

Write an XPath expression that gives the
courses that are given in period 2, but with
only the GivenIn element for period 2 as a
child!

It can’t be done!
XPath is not a full query language, it only allows us
to specify paths to elements or groups of elements.
We can restrict in the path using [] notation, but we
cannot restrict further down in the tree than what
the path points to.

7

Example: /Courses/Course[GivenIn/@period = 2]

Courses

db
alg

p2
p4

p1
138

Niklas Broberg

120

Rogardt Heldal

68

Devdatt Dubhashi

Algorithms

Databases

TDA357 TIN090

2

4

1

course course
code

name

givenIn

period

teacher

nrStudents

code

name

givenIn

period

teacher

nrStudentsnrStudents

period

teacher

givenIn

XQuery

• XQuery is a full-fledged querying language
for XML documents.

– Cf. SQL queries for relational data.

• XQuery is built on top of XPath, and uses
XPath to point out element sets.

• XQuery is a W3 recommendation.

If our XQuery file contains:

or:

then the XQuery processor will produce the
following XML document:

XQuery “Hello World”

<Greeting>Hello World</Greeting>

let $s := "Hello World"

return <Greeting>{$s}</Greeting>

<?xml version="1.0" encoding="UTF-8"?>

<Greeting>Hello World</Greeting>

Function doc("file.xml")

bash$ cat example.xq

doc("courses.xml")

bash$ xquery example.xq

<?xml version="1.0" encoding="UTF-8"?>

<Courses>

<Course name="Databases" code="TDA357">

<GivenIn period="2" teacher="Niklas Broberg"/>

<GivenIn period="4" teacher="Rogardt Heldal"/>

</Course>

<Course name="Algorithms" code="TIN090">

<GivenIn period="1" teacher="Devdatt Dubhashi"/>

</Course>

</Courses>

Quiz!

Write an XQuery expression that puts extra
<Result></Result> tags around the result, e.g.

<Result>

<Courses>

<Course name="Databases" code="TDA357">

<GivenIn period="2" teacher="Niklas Broberg"/>

<GivenIn period="4" teacher="Rogardt Heldal"/>

</Course>

<Course name="Algorithms" code="TIN090">

<GivenIn period="1" teacher="Devdatt Dubhashi"/>

</Course>

</Courses>

</Result>

Putting tags around the result

<Result>{doc("courses.xml")}</Result>

let $d := doc("courses.xml")

return <Result>{$d}</Result>

Curly braces are necessary to evaluate the
expression between the tags.

Alternatively, we can use a let clause to assign a
value to a variable. Again, curly braces are
needed to get the value of variable $d.

8

FLWOR

• Basic structure of an XQuery expression is:

– FOR-LET-WHERE-ORDER BY-RETURN.

– Called FLWOR expressions (pronounce as flower).

• A FLWOR expression can have any number of
FOR (iterate) and LET (assign) clauses, possibly
mixed, followed by possibly a WHERE clause
and possibly an ORDER BY clause.

• Only required part is RETURN.

Quiz!

What does the following XQuery expression
compute?

let $courses := doc("courses.xml")

for $gc in $courses//GivenIn

where $gc/@period = 2

return <Result>{$gc}</Result>

<?xml version="1.0" encoding="UTF-8"?>

<Result>

<GivenIn period="2" teacher="Niklas Broberg"/>

</Result>

Quiz!

What does the following XQuery expression
compute?

let $courses := doc("courses.xml")

let $gc := $courses//GivenIn[@period = 2]

return <Result>{$gc}</Result>

<?xml version="1.0" encoding="UTF-8"?>

<Result>

<GivenIn period="2" teacher="Niklas Broberg"/>

</Result>

Quiz!

What does the following XQuery expression
compute?

let $courses := doc("courses.xml")

for $c in $courses/Courses/Course

let $code := $c/@code

let $given := $c/GivenIn

where $c/GivenIn/@period = 2

return <Result code="{$code}">{$given}</Result>

<? xml version="1.0" encoding="UTF-8"?>

<Result code="TDA357">

<GivenIn period="2" teacher="Niklas Broberg"/>

<GivenIn period="4" teacher="Rogardt Heldal"/>

</Result>

Quiz!

Write an XQuery expression that gives the
courses that are given in period 2, but with
only the GivenIn element for period 2 as

a child!

let $courses := doc("courses.xml")

for $c in $courses/Courses/Course

let $code := $c/@code, $name := $c/@name

let $gc := $c/GivenIn[@period = 2]

where not(empty($gc))

return <Course code="{$code}"

name="{$name}">{$gc}</Course>

A sequence of elements

let $courses := doc("courses.xml")

for $gc in $courses/Courses/Course/GivenIn

return $gc

<GivenIn period="2" teacher="Niklas Broberg"/>

<GivenIn period="4" teacher="Rogardt Heldal"/>

<GivenIn period="1" teacher="Devdatt Dubhashi"/>

The previous examples have all returned a single
element. But an XQuery expression can also
evaluate to a sequence of elements, e.g.

9

Putting tags around a sequence
let $courses := doc("courses.xml")

let $seq := (

for $gc in $courses/Courses/Course/GivenIn

return $gc)

return <Result>{$seq}</Result>

<?xml version="1.0" encoding="UTF-8"?>

<Result>

<GivenIn period="2" teacher="Niklas Broberg"/>

<GivenIn period="4" teacher="Rogardt Heldal"/>

<GivenIn period="1" teacher="Devdatt Dubhashi"/>

</Result>

<Result>

{

let $courses := doc("courses.xml")

for $gc in $courses/Courses/Course/GivenIn

return $gc

}

</Result>

Cartesian product

let $courses := doc("courses.xml")

for $c in $courses/Courses/Course

for $gc in $courses/Courses/Course/GivenIn

return <Info name="{$c/@name}" teacher="{$gc/@teacher}" />

<Info name="Databases" teacher="Niklas Broberg"/>

<Info name="Databases" teacher="Rogardt Heldal"/>

<Info name="Databases" teacher="Devdatt Dubhashi"/>

<Info name="Algorithms" teacher="Niklas Broberg"/>

<Info name="Algorithms" teacher="Rogardt Heldal"/>

<Info name="Algorithms" teacher="Devdatt Dubhashi"/>

Two for clauses will iterate over all combinations
of values for the loop variables, e.g.

Aggregations

<Result>

{

count(doc("scheduler.xml")//Room)

}

</Result>

<Result>

{

sum(doc("scheduler.xml")//Room/@nrSeats)

}

</Result>

XQuery provides the usual aggregation functions,
count, sum, avg, min, max.

Joins in XQuery

We can join two or more documents in XQuery by
calling the function doc() two or more times.

let $a = doc("a.xml")

let $b = doc("b.xml")

...

(... compare values in $a with values in $b ...)

<Result>

{

for $d in (doc("scheduler.xml"), doc("courses.xml"))

return $d

}

</Result>

Quiz: what does this XQuery expression compute?

Sorting in XQuery

<Result>

{

let $courses := doc("courses.xml")

for $gc in $courses/Courses/Course/GivenIn

order by $gc/@period

return $gc

}

</Result>

<?xml version="1.0" encoding="UTF-8"?>

<Result>

<GivenIn period="1" teacher="Devdatt Dubhashi"/>

<GivenIn period="2" teacher="Niklas Broberg"/>

<GivenIn period="4" teacher="Rogardt Heldal"/>

</Result>

Quantification in XQuery

every variable in expression satisfies condition

some variable in expression satisfies condition

An XQuery expression might evaluate to a single
item or a sequence of items.

Most tests in XQuery, such as the "=" comparison
operator, are existentially quantified anyway, so
"some" is rarely needed.

10

Comparing items in XQuery

• The comparison operators eq, ne, lt, gt, le and
ge can be used to compare single items.

• If either operand is a sequence of items, the
comparison will fail.

Updating XML

• We have corresponding languages for
XML and relational databases:

– SQL DDL � DTDs or XML Schema.

– SQL queries � XQuery

– SQL modifications � ??

• There is no standard language for
updating XML documents… yet!

– Plenty of vendor-specific languages though…

XQuery Update

• W3 is working on a language with the
working name XQuery Update.

– Extends XQuery to support insertions,
deletions and updates.

– (as-of-yet-unofficial) Example:

update

for $l in /Scheduler/Courses/Course

[@code = ”TDA357”]/GivenIn

[@period = 2]/Lectures

where $l/@hour = ”08:00”

replace $l/@hour with ”10:00”

Warning …

• “Many companies report a strong interest
in XML. XML however, is so flexible that
this is similar to expressing a strong
interest in ASCII characters.”
http://xml.coverpages.org/BiztalkFrameworkOverviewFinal.html

Looking to the future

– RDF, RDF Schema, OWL, …

Summary XML

• XML is used to describe data organized as documents.
– Semi-structured data model.

– Elements, tags, attributes, children.

– Namespaces.

• XML can be valid with respect to a schema.
– DTD: ELEMENT, ATTLIST, CDATA, ID, IDREF

– XML Schema: Use XML for the schema domain to describe your
schema.

• XML can be queried for information:
– XPath: Paths, axes, selection

– XQuery: FLWOR.

Exam –XML

”A medical research facility wants a database that uses a
semi-structured model to represent different degrees
of knowledge regarding the outbreak of epidemic
diseases. …”

• Suggest how to model this domain as a DTD (or XML
Schema).

• Discuss the benefits of the semi-structured data model
for this particular domain.

• Given this DTD, what does this XPath/XQuery
expression compute?

• Write an XQuery expression that computes…

