
Resource Allocation

Processes share common resources e�g� a shared
memory where only one holder of the resource should
be able to access the resource�

The problem can be described by a �nite set of resources
and a �nite set of processes that compete for accessing
their resources� Any solution of the problem is required to
guarantee�

� mutual exclusion� no resource may be accessed
by more than one process at any time

� no starvation� as long as processes do not fail
every process which is trying to access the resource will
succeed in �nite time�

Special Case� Mutual exclusion �� resource ahares by
everybody� complete communication graph�

� Typeset by FoilTEX � �



The algorithm of Ricart and Agrawala

This algorithm resolves con	icts between processes by
sending messages with time stamps�

For this purpose a process which changes its state
to hungry sends messages� called requests� to all its
neighbours�

A request message includes information about the
unique identi�er of the sender and a time stamp�

The time stamp is the local clock of the sending
process when the message was created� It is increased
when a message request is sent or received�

On the receiving of request a process� which is
competing with another process for a resource� can
distinguish whether receiver or sender were requesting 
�rst�
for a Resource assuming the lexical order of events�

� Typeset by FoilTEX � �



The Protocol

A process p that receives a message request from
process q does the following depending on its state�

� If p is thinking� then it sends a message fork to q�
Sending a fork a process gives permission to the other
process to access the resource and guarantees not to
access the resource until it received itself a message
fork�

� If p is hungry� then it is competing with q for the same
resource� This means that p sent before a message
request to q� so p concludes by using the lexical order of
events which process sent its message �rst� If p sent its
message 
after� q sent its fork then it replies by sending
message fork� Otherwise it delays sending message fork
until it �nished with accessing its critical section�

� If p is eating it also delays sending message fork until it
�nished with its critical section�

� Typeset by FoilTEX � �



A process may access its critical section� when it received
a message fork from all its neighbours�

When it is �nished it sends to all neighbours which
requested to access a resource messages fork and changes
its state to thinking�

� Typeset by FoilTEX � �



Correctness

Mutual Exclusion

Proof� Assume towards a contradiction that processes p
and q were in their critical section at the same time� �

In order to gain access to their critical section processes p
and q send request messages to all their neighbours�

Let t p denote the local clock time when process p sent
its request messages

and

let t q denote the local clock time when process q sent
its request messages�

Due to the lexical order of time either t p � t q or t p
� t q is true�

t p � t q�

� p received request by q after it send its request

� Typeset by FoilTEX � �



� would have delayed replying the request message of
process q until p �nished accessing its critical section�

This implies that t p � t q was valid����

Contradiction�

� Typeset by FoilTEX � �



Correct �progress��

Proof� Assume towards a contradiction again that� �

there is a point in the execution in which some processes
are hungry� and after this point no process can enter its
critical section�

Then the system will reach a state in which no messages
are sent any longer and no process changes its state�

Let p be a process in state hungry with smallest request
time in this 
permanent� state�

p sent requests and is waiting for at least one reply�

� All neighbours in state thinking must have answered the
request

� All processes in state hungry will send messages fork to
p

Contradiction�

� Typeset by FoilTEX � �



Fairness � no Starvation

A hungry process will access the Critical Section in a
�nite time�

Proof� Receiving message request will make the local
clock of a process at least one unit greater than the time
stamp of message request� �

Therefore� a process which sends request messages to all
its neighbours will loose at most once in a competition with
each neighbour while it is trying to access a resource�

From the previous proof we also have that while you
are hungry the system will be serving neighbours���

� Typeset by FoilTEX � 	



Complexities

Time Complexity� O�n�k�

We assume that it take at most k time units for a process
to exit the critical section�

Communication Complexity� ��n	
�

Fault tolerance� None

A failure of a process might stop all other processes from
being able to access the critical section�

� Typeset by FoilTEX � 



