
1

23

4

0

Once upon a time ... [Dij71]

Traditional non-symmetric: Left-Right solution[RL81] Probabilistic symmetric solutionNo deterministic symmetric dining solution

. . .

.
 ..

. . .

Now:following:

Generalized dining philosophers [Lyn81]

� Each philosopher has an arbitrary number of neighbours� 9 one fork between every pair of neighbours� Each philosopher needs all adjacent forks to eat� Requirements:Exclusion: Disallow neighbours to eat simultaneously+ no deadlock, no starvation

Conict graph, � = degree

. . .

.
 ..

. . .

i need these bottles
hick!

� 9 one bottle between each pair of neighbours

Drinking philosophers [CM84]

� Each thirsty philosopher needs a (prespeci�ed) subset� Requirements:provided that they need to drinkfrom di�erent (prespeci�ed) bottles
(may di�er each time) of its incident bottles to drinkExclusion: Allow neighbours to drink simultaneously,

+ no deadlock, no starvation

ooo
ooo
ooo

ooo
ooo
ooo

ooo
ooo
ooo

ooo
ooo
ooo

ooo
ooo
ooo

Mobile Philosophers [GPT96]

Channel (Frequency) Allocation base stationuser (philosopher), mobile host� Frequency spectrum same in each cell� Each philosopher needs some (arbitrary, not prespeci�ed)subset of frequencies to communicate� Requirements:possible for neighbours to operate simultaneously� Request satis�ability (Bandwidth Utilisation)
Exclusion: Allow choice of frequencies so as to make it+ no deadlock, no starvation

General Requirements
Di�erent constraints and exibility for each versionNo deadlock

Evaluation Criteria
No starvation
Time and communication complexity (to satisfy a request)

Failure locality [CS92]Fault tolerance(units depend on the communication system)

Exclusion

Request Satis�ability (for mobile philosophers)

. . .

. . .
.

. . .

. . .
..

then wait for

then wait for

Generalized Left-Right Dining [Lyn81]

piC+1, eatingpicked by

pi
Idea:Color resources (edge-color conict graph), C colorspi picks forks in increasing color order (using mutex for each)color order guarantees no deadlock, no starvationProcess waiting chains

= also failure localitymax-length = C wait forfork color 1picked by
then wait forwait forpi(C�1)

wait forfork color CpiCpicked by Tree gives worst case waitingexponential in Cfork color C
pi1

Restricting the waiting chain length [SP88]Idea:again picks forks in increasing color order (using mutex for each)but now:if pi picked color 1, 2, . . . x=2, . . . need to wait for color x
max-waiting-chain-length = logC (= also failure locality)in addition: synchronization doorway

collect forks
wait for permission by each of the neighbours to crossTime, communication complexity = O(�logC)

backtrack (release forks back to x=2)

Why pick forks 1-by-1? Another approach [CM84]Idea:� Initial Acyclic Orientation� Sink-nodes can eat; then� Reverse incident-edge-direction (send priviledges)using initial labeling (e.g. node coloring) and priviledge tokens

Result:
(more on acyclic orientations in [AST94], [BG94])

dynamic priority resolution schemecan e.g. resolve possible conicts in the drinking solutionWaiting chain length = O(n) (= failure locality also)

Con�ict �� Precedence Graph

Undirected graph� in which edges represent shared
resources between processes we call this graph conflict
graph�

The algorithm by Chandy and Misra resolves con�icts
by de�ning for every possible con�ict a precedence relation�

� When two processes compete for a resource the one
with higher precedence may access the resource �rst�

� In order to receive a solution which is fair these
precedences will have to change dynamically�

The directed graph graph that changes dynamically is called
precedence graph�

For each resource an edge of the precedence graph is
directed from processes with lower precedence to processes
with higher precedence�

� Typeset by FoilTEX � �

The precedences of the graph are chosen such that it
is always possible to distinguish at least one process from
all other processes i�e� this process can enter its critical
section� �NO DEADLOCK�

This is ensured by the existence of at least one process
which has higher precedence for all its shared resources� A
process with this property is called sink�

Its existence is guaranteed when the precedence graph
is always acyclic�

By changing directions of edges it is possible to change
the precedences dynamically�

This must happen in a way that the precedence graph
stays acyclic� so progress� fairness and mutual exclusion is
guaranteed�

� Typeset by FoilTEX � �

Starting with a DAG

� The graph is initialised acyclic for example by a node	
colouring algorithm�

� The graph can remain acyclic if after use of the critical
section a process reverse all adjacent precedences in one
step�

� Need a mechanism to keep the sense of direction�

� Typeset by FoilTEX � �

The mechanism

Forks which have the property to be either clean or
dirty�

� A fork will be cleanedbefore it is send to a neighbour
process�

� A clean fork will become dirty when the holder of the
resource enters the critical section�

� After use it remains dirty until it is sent to a neighbour
process�

� Typeset by FoilTEX � �

The dynamic DAG

� The respective precedence graph H can be de�ned in
the following way�

� For all pairs of processes p and q which share a common
resource� �p�q� one of the following statements is true�

� p holds the fork for the resource and the fork is clean

�� q holds the fork for the resource and the fork is dirty

�� the fork for the resource is in transit from q to p

� Typeset by FoilTEX � �

Requesting Forks

The request of forks is realized by request tokens�

For each fork there exist one request token such that
only the holder of the request token can request a fork�

A hungry process requests a fork by sending the request
token to the owner of the desired fork�

A process is not interested in accessing its resources
when it holds a request token but not a fork�

� Typeset by FoilTEX � �

The algorithm

The algorithm is initialised by an acyclic precedence
graph H and all processes with lower precedence own dirty
forks while processes with higher precedence own request
tokens�

All processes are thinking i�e they are not interested in
their resources�

A process which becomes hungry will send all its request
token to neighbour processes and wait until it received
all forks�

� A process which received all forks will change its state
to eating�

� A process which leaves the critical section

changes the state of all its forks to dirty� Then
for all held request token the respective fork is sent
to neighbour processes�

The above steps assume following rules�

� Typeset by FoilTEX � �

Receiving a request token for fork f �

� If processors state is dierent from eating and f is
dirty then f will be sent to the requesting processor�

�� If processors state was also hungry then the request
token will also be sent back�

Receiving a fork f � The state of f will be set to clean�

� Typeset by FoilTEX � 	

Correctness

Mutual Exclusion�

Proof� The precedence graph H is acyclic� �

No Starvation

Proof� Let the depth in H of any process p be de�ned
as the maximum number of edges along a path from p to
another process without predecessor� The proof will show
by induction that a process of depth k will eventually eat if
predecessors at depth k�� can eat� �

� Typeset by FoilTEX �

Complexities

Communication Complexity� O�degree�

Proof� A process sends at most one request token to
each neighbour and receives from each neighbour at most
one fork� �

Tine Complexity� O�n�

� Typeset by FoilTEX � ��

