Once upon a time ... [Dij71]

No deterministic symmetric dining solution

[RL81] Probabilistic symmetric solution

Traditional non-symmetric: Left-Right solution



Generalized dining philosophers [Lyn81]

following:

Conflict graph, A = degree

e Each philosopher has an arbitrary number of neighbours
e 7 one fork between every pair of neighbours
e Each philosopher needs all adjacent forks to eat

e Requirements:

Exclusion: Disallow neighbours to eat simultaneously

+ no deadlock, no starvation






Drinking philosophers [CM84]|

e 7 one bottle between each pair of neighbours

e Each thirsty philosopher needs a (prespecified) subset
(may differ each time) of its incident bottles to drink

e Requirements:
Exclusion: Allow neighbours to drink simultaneously,
provided that they need to drink

from different (prespecified) bottles
+ no deadlock, no starvation






Mobile Philosophers [GPT96]

‘ base station

‘ i user (philosopher), mobile host

Channel (Frequency) Allocation

e Frequency spectrum same in each cell

e Each philosopher needs some (arbitrary, not prespecified)
subset of frequencies to communicate
e Requirements:
Exclusion: Allow choice of frequencies so as to make it

possible for neighbours to operate simultaneously
+ no deadlock, no starvation

e Request satisfiability (Bandwidth Utilisation)



General Requirements

Exclusion

Different constraints and flexibility for each version

No deadlock

No starvation

Evaluation Criteria

Time and communication complexity (to satisfy a request)

(units depend on the communication system)

Fault tolerance
Failure locality [CS9

Request Satisfiability (for mobile philosophers)



Generalized Left-Right Dining [Lyn81]

Idea:

Color resources (edge-color conflict graph), C colors

p; picks forks in increasing color order (using mutex for each)

Process waiting chains Di
wait fo

fork color 1
— also failure locality pleEﬁ)/ then wat

p701

wait for
fork color then wai
plcked by
Walt for
fork color then wai
plcked b

Pic+1, eatlng

exponential in C




Restricting the waiting chain length [SP88]

Idea:

again picks forks in increasing color order (using mutex for each)

but now:

if p;, picked color 1, 2, . .

. x/2y . .

. need to wait for color z

backtrack (release forks back to z/2)

in addition: synchronization doorway

A\

P
7

collect forks

wait for permission by each of the neighbours to cross



Why pick forks 1-by-1? Another approach [CM84]

Idea:
e Initial Acyclic Orientation
using initial labeling (e.g. node coloring) and priviledge tokens
e Sink-nodes can eat; then

e Reverse incident-edge-direction (send priviledges)

e

Result:

dynamic priority resolution scheme

can e.g. resolve possible conflicts in the drinking solution

Waiting chain length = O(n) (= failure locality also)

(more on acyclic orientations in [AST94], [BG94])



Conflict -> Precedence Graph

Undirected GRAPH, in which edges represent shared
resources between processes we call this graph CONFLICT
GRAPH.

The algorithm by Chandy and Misra resolves conflicts
by defining for every possible conflict a precedence relation:

e When two processes compete for a resource the one
with higher precedence may access the resource first.

e In order to receive a solution which is fair these
precedences will have to change dynamically.

The directed graph graph that changes dynamically is called
precedence graph.

For each resource an edge of the precedence graph is
directed from processes with lower precedence to processes
with higher precedence.

— Typeset by Foil TEX - 1



The precedences of the graph are chosen such that it
is always possible to distinguish at least one process from
all other processes i.e. this process can enter its critical

section. (NO DEADLOCK)

This is ensured by the existence of at least one process
which has higher precedence for all its shared resources. A
process with this property is called sink.

lts existence is guaranteed when the precedence graph
iIs always acyclic.

By changing directions of edges it is possible to change
the precedences dynamically.

This must happen in a way that the precedence graph
stays acyclic, so progress, fairness and mutual exclusion is
guaranteed.

— Typeset by Foil TEX - 2



Starting with a DAG

e The graph is initialised acyclic for example by a node-
colouring algorithm.

e The graph can remain acyclic if after use of the critical
section a process reverse all adjacent precedences in one
step.

e Need a mechanism to keep the sense of direction:

— Typeset by Foil TEX - 3



The mechanism

Forks which have the property to be either clean or
dirty.

e A fork will be cleanedbefore it is send to a neighbour
process.

e A clean fork will become dirty when the holder of the
resource enters the critical section.

e After use it remains DIRTY until it is sent to a neighbour
process.

— Typeset by Foil TEX - 4



The dynamic DAG

e The respective precedence graph H can be defined in
the following way:

e For all pairs of processes p and g which share a common
resource, <p,g> one of the following statements is true:

1. p holds the fork for the resource and the fork is CLEAN
2. g holds the fork for the resource and the fork is DIRTY

3. the fork for the resource is in transit from g to p

— Typeset by Foil TEX - 5



Requesting Forks

The request of forks is realized by request tokens.

For each fork there exist one request token such that
only the holder of the request token can request a fork.

A hungry process requests a fork by sending the request
TOKEN to the owner of the desired fork.

A process is not interested in accessing its resources
when it holds a request TOKEN but not a fork.

— Typeset by Foil TEX - 6



The algorithm

The algorithm is initialised by an acyclic precedence
graph H and all processes with lower precedence own dirty
forks while processes with higher precedence own request
tokens.

All processes are thinking i.e they are not interested in
their resources.

A process which becomes hungry will send all its request
TOKEN to neighbour processes and wait until it received

all forks.

e A process which received all forks will change its state
to eating.

e A process which leaves the CRITICAL SECTION
changes the state of all its forks to DIRTY. Then
for all held request TOKEN the respective fork is sent
to neighbour processes.

The above steps assume following rules:

— Typeset by Foil TEX - 7



Receiving a request TOKEN for fork f:

1. If processors state is different from eating and f is
DIRTY then f will be sent to the requesting processor.

2. It processors state was also hungry then the request
TOKEN will also be sent back.

Receiving a fork f: The state of f will be set to clean.

— Typeset by Foil TEX - 8



Correctness

Mutual Exclusion:

Proof. The precedence graph H is acyclic. O

No Starvation

Proof. Let the depth in H of any process p be defined
as the maximum number of edges along a path from p to
another process without predecessor. The proof will show
by induction that a process of depth k will eventually eat if
predecessors at depth k-1 can EAT. O

— Typeset by Foil TEX - 9



Complexities

Communication Complexity: O(degree)

Proof. A process sends at most one request TOKEN to
each neighbour and receives from each neighbour at most
one fork. O

Tine Complexity: O(n)

— Typeset by Foil TEX - 10



