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1. Introduction

This document describes the compiler project that you will do as the main part of the examina-
tion for the Compiler construction course. The project is done individually or in groups of two
students (recommended). The project is naturally split into three parts:

1. Front end for the language Javalette, i.e. lexical analysis, parsing, building abstract syn-
tax, type-checking and a few static checks.

2. A back end that generates code for JVM (the Java Virtual Machine).

3. A back end that generates code for LLVM (the Low Level Virtual Machine).

Both JVM and LLVM are described in more detail later in this document.

There are several optional extensions that you may choose to do to get a higher grade, as detailed
below. However, the minimal project consists of these three parts. Of these, the front end builds
mainly on knowledge that you should have acquired previously, e.g. in the course Programming
language technology.

There are two submission deadlines:

• Submission A: Monday, April 25 at 23.59. At this point you must submit parts 1 and
2, i.e. a working compiler that can compile and run in the JVM all programs in the
base language. There is one optional extension that you may choose to implement, one-
dimensional arrays and for loops.

Note: We are aware that the deadline is in the middle of the Easter break. You are,
of course, free to submit your solution before the break; we think this is feasible. The
deadline is set to allow those of you who want to finish the submission during the break
to do so!

• Submission B: Thursday, May 19 at 23.59. Parts 1 and 3, including any extensions that
you have chosen to implement.

In addition to these two submissions, examination includes a brief oral exam in the exam week
May 23 – 27.

The options for an extended project are to extend the source language with e.g. arrays and for
loops, structures and pointers, object-oriented features or to generate native x86 code. There
is also one extension which involves studying optimizations in the LLVM framework. You do
not need to decide in advance how ambitious you will be; instead you should finish each stage
before you attempt an extension.

Part of the goal of a project course like this is that you shall deliver working code on time. Thus,
credits will be awarded for working extensions submitted before the deadline. We may allow
resubmissions for minor bugfixes, but no partial credits will be awarded for partial solutions.

Note on workload: There is less than three weeks until deadline B when we resume after Easter.
Thus, if you aim for grade 5/VG, you should probably aim for finishing part A (including the
optional extension) before Easter and maybe also get started with part B before we resume.
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1. The language Javalette

Javalette is a simple imperative language. It is almost a subset of C (see below). It can also be
easily translated to Java (see below).

Javalette is not a realistic language for production use. However, it is big enough to allow
for a core compiler project that illustrates all phases in compilation. It also forms a basis for
extensions in several directions.

The basic language has no heap-allocated data. However, the extensions involve (Java-like)
arrays, structures and objects, all of which are allocated on the heap. The extended language is
designed to be garbage-collected, but you will not implement garbage collection as part of your
project.

The description in this document is intentionally a bit vague and based on examples; it is part
of your task to define the language precisely. However, the language is also partly defined by a
collection of test programs (see below), on which the behaviour of your compiler is specified.

1.1. Some small Javalette programs

Let’s start with a couple of small programs. First, here is how to say hello to the world:

// Hello world program

int main () {
printString("Hello world!") ;
return 0 ;

}

A program that prints the even numbers smaller than 10 is

int main () {
int i = 0 ;
while (i < 10) {
if (i % 2 == 0) printInt(i) ;
i++ ;

}
return 0 ;

}

Finally, we show the factorial function in both iterative and recursive style:

int main () {
printInt(fact(7)) ;
printInt(factr(7)) ;
return 0 ;

}

// iterative factorial

int fact (int n) {
int i,r ;
i = 1 ;
r = 1 ;
while (i <= n) {
r = r * i ;
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i++ ;
}
return r ;

}

// recursive factorial

int factr (int n) {
if (n < 2)
return 1 ;

else
return n * factr(n-1) ;

}

1.2. Program structure

A Javalette program is a sequence of function definitions.

A function definition has a return type, a name, a parameter list, and a body consisting of a
block.

The names of the functions defined in a program must be different (i.e, there is no overloading).

One function must have the name main. Its return type must be int and its parameter list empty.
Execution of a program consists of executing main.

A function whose return type is not void must return a value of its return type. The compiler
must check that it is not possible that execution of the function terminates without passing a
return statement. This check may be conservative, i.e. reject as incorrect certain functions
that actually would always return a value. A typical case could be to reject a function ending
with an if-statement where only one branch returns, without considering the possibility that
the test expression might always evaluate to the same value, avoiding the branch without return.
However, your check must correctly decide the control flow when the test expression is the
literal true or the literal false. A function, whose return type is void, may, on the other hand,
omit the return statement completely.

Functions can be mutually recursive, i.e. call each other. There is no prescribed order between
function definitions (i.e., a call to a function may appear in the program before the function
definition).

There are no modules or other separate compilation facilities; we consider only one-file pro-
grams.

1.3. Types

Basic Javalette types are int, double, boolean and void. Values of types int, double and
boolean are denoted by literals (see below). void has no values and no literals.

No coercions (casts) are performed between types. Note this; it is NOT considered an improve-
ment to your compiler to add implicit casts. In fact, some of the test programs check that you
do not allow casts.

In the type checker, it is useful to have a notion of a function type, which is a pair consisting of
the value type and the list of parameter types.

1.4. Statements

The following are the forms of statements in Javalette; we indicate syntax using BNFC no-
tation, where we use Ident, Exp and Stmt to indicate a variable, expression and statement,
respectively. Terminals are given within quotes. For simplicity, we sometimes deviate here
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from the actual provided grammar file.

• Empty statement: ";"

• Variable declarations: Type Ident ";"

Comment: Several variables may be declared simultaneously, as in int i, j; and initial
values may be specified, as in int n = 0;

• Assignments: Ident "=" Exp ";"

• Increments and decrements: Ident "++" ";" and Ident "--" ";"

Comment: Only for variables of type int; can be seen as sugar for assignments.

• Conditionals: "if" "(" Exp ")" Stmt "else" Stmt

Comment: Can be without the else part.

• While loops: "while" "(" Exp ")" Stmt .

• Returns: "return" Exp ";"

Comment: No Exp for type void.

• Expressions of type void: Exp ";"

Comment: The expression here will be a call to a void function (no other expressions
have type void).

• Blocks: "{" [Stmt] "}"
Comment: A function body is a statement of this form.

Declarations may appear anywhere within a block, but a variable must be declared before it is
used.

A variable declared in an outer scope may be redeclared in a block; the new declaration then
shadows the previous declaration for the rest of the block.

A variable can only be declared once in a block.

If no initial value is given in a variable declaration, the value of the variable is initialized to 0
for type int, 0.0 for type double and false for type boolean. Note that this is different from
Java, where local variables must be explicitly initialized.

1.5. Expressions

Expressions in Javalette have the following forms:

• Integer, double, and Boolean literals (see below).

• Variables.

• Binary operator applications, with operators +, -, *, / and %. Types are as expected; all
except % are overloaded. Precedence and associativity as in C and Java.

• Relational expressions, with relations ==, !=, <, <=, > and >=. All overloaded as expected.

• Disjunctions and conjunctions, with operators || and &&. These operators have lazy
semantics, i.e.,

– In a && b, if a evaluates to false, b is not evaluated and the value of the whole
expression is false.

– In a || b, if a evaluates to true, b is not evaluated and the value of the whole
expression is true.
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• Unary operator applications, with operators - and ! (negation of int and double, nega-
tion of boolean).

• Function calls.

1.6. Lexical details

Some of the tokens in Javalette are

• Integer literals: sequence of digits, e.g. 123.

• Float (double) literals: digits with a decimal point, e.g. 3.14, possibly with an exponent
(positive or negative), e.g. 1.6e-48.

• Boolean literals: true and false.

• String literals: ASCII characters in double quotes, e.g. "Hello world" (escapes as
usual: \n \t \" \\). Can only be used in calls of primitive function printString.

• Identifiers: a letter followed by an optional sequence of letters, digits, and underscores.

• Reserved words: These include while, if, else and return.

Comments in Javalette are enclosed between /* and */ or extend from // to the end of line, or
from # to the end of line (to treat C preprocessor directives as comments).

1.7. Primitive functions

For input and output, Javalette programs may use the following functions:

void printInt (int n)
void printDouble(double x)
void printString(String s)
int readInt()
double readDouble()

Note that there is no type of strings in Javalette, so the only argument that can be given to
printString is a string literal.

The print functions print their arguments terminated by newline and the read functions will only
read one number per line. This is obviously rudimentary, but enough for our purposes.

These functions are not directly implemented in the virtual machines we use. We will provide
them using other means, as detailed below.

1.8. Parameter passing

All parameters are passed by value, i.e. the value of the actual parameter is computed and copied
into the formal parameter before the subroutine is executed. Parameters act as local variables
within the subroutine, i.e. they can be assigned to.

1.9. Javalette, C, and Java

Javalette programs can be compiled by a C compiler (gcc) if prefixed by suitable preprocessor
directives and macro definitions, e.g.

#include <stdio.h>
#define printInt(k) printf("%d\n", k)
#define boolean int
#define true 1
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In addition, function definitions must be reordered so that definition precedes use, mutual recur-
sion must be resolved by extra type signatures and variable declarations moved to the beginnings
of blocks.

Javalette programs can be compiled by a Java compiler (javac) by wrapping all functions in a
class as public static methods and adding one more main method that calls your main:

public static void main (String [] args) {
main();

}

2. Extensions, credits and grades

This section describes optional extensions that you may implement to learn more, get credits
and thus a higher final grade. You may choose different combinations of the extensions.

In submission A, you may earn one credit, by implementing the extension in 2.1 below (one-
dimensional arrays and for loops). Note that there is no credit for the other extensions in the
first submission.

In submission B, each of the seven tasks described in sections 2.1–2.7 gives one credit if imple-
mented as described.

Thus you may earn up to eight credits in total. To pass the course and get grade 3 (or G, if
you are a GU student), you do not need to earn any credits; you just have to implement basic
Javalette in the two submissions and pass the oral exam. To get grade 4, you must earn three
credits; grade 5 (VG for GU students) requires five credits.

In this section we specify the requirements on the extensions. Some implementation hints are
given in section 7 and in the lecture notes.

2.1. One-dimensional arrays and for loops

The basic Javalette language has no heap-allocated data, so memory management consists only
of managing the run-time stack. In this extension you will add one-dimensional arrays to basic
Javalette. To get the credit, you must implement this in the front end and in the respective back
end. (So you can do it twice and get two credits.)

Arrays are Java-like, i.e. variables of array type contain a reference to the actual array, which is
allocated on the heap. Arrays are explicitly created using a new construct and variables of array
type have an attribute, length, which is accessed using dot notation.

Some examples of array declarations in the extension are

int[] a ;
double[] b;

Creating an array may or may not be combined with the declaration:

a = new int[20];
int[] c = new int[30];

After the above code, a.length evaluates to 20 and a refers to an array of 20 integer values,
indexed from 0 to 19 (indexing always starts at 0).

Functions may have arrays as arguments and return arrays as results:

int[] sum (int[] a, int[] b) {
int[] res = new int [a.length];
int i = 0;
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while (i < a.length) {
res[i] = a[i] + b[i];
i++;

}
return res;

}

Array parameters are passed by value, i.e. the reference is copied into the parameter.

One new form of expressions is added, namely indexing, as shown in the example. Indexed
expressions may also occur as L-values, i.e. as left hand sides of assignment statements. An
array can be filled with values by assigning each individual element, as in function sum. But
one can also assign references as in C or Java:

c = a;

The extension also includes implementation of a simple form of foreach-loop to iterate over
arrays. If expr is an expression of type t[], the following is a new form of statement:

for ( t var : expr) stmt

The variable var of type t assumes the values expr[0], expr[1] and so on and the stmt is executed
for each value. The scope of var is just stmt.

This form of loop is very convenient when you want to iterate over an array and access the
elements, but it is not useful when you need to assign values to the elements. For this, we still
have to rely on the while loop. The traditional for loop would be attractive here, but we cannot
implement everything.

Test files for this extension are in subdirectory extensions/arrays1.

2.2. Multidimensional arrays

In this extension you add arrays with an arbitrary number of indices. Just as in Java, an array of
type int[][] is a one-dimensional array, each of whose elements is a one-dimensional array of
integers. Declaration, creation and indexing is as expected:

int[][] matrix = new int[10][20];
int[][][] pixels;
...
matrix[i][j] = 2 * matrix[i][j];

You must specify the number of elements in each dimension when creating an array. For a two-
dimensional rectangular array such as matrix, the number of elements in the two dimensions
are matrix.length and matrix[0].length, respectively.

2.3. Dynamic data structures

In this extension you will implement a simple form of dynamic data structures, which is enough
to implement lists and trees. The source language extensions are the following:

• Two new forms of top-level definitions are added (in the basic language there are only
function definitions):

1. Structure definitions, as examplified by

struct Node {
int elem;
list next;

};
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2. Pointer type definitions, as examplified by

typedef struct Node *list;

Note that this second form is intended to be very restricted. We can only use it to in-
troduce new types that represent pointers to structures. Thus this form of definition
is completely fixed except for the names of the structure and the new type. Note
also that, following the spirit of Javalette, the order of definitions is arbitrary.

• Three new forms of expression are introduced:

1. Heap object creation, examplified by new Node, where new is a new reserved word.
A new block of heap memory is allocated and the expression returns a pointer to
that memory. The type of this expression is thus the type of pointers to Node, i.e.
list.

2. Pointer dereferencing, examplified by xs->next. This returns the content of the
field next of the heap node pointed to by xs.

3. Null pointers, examplified by (list)null. Note that the pointer type must be ex-
plicitly mentioned here, using syntax similar to casts (remember that there are no
casts in Javalette).

• Finally, pointer dereferencing may also be used as L-values and thus occur to the left of
an assignment statement, as in

xs->elem = 3;

Here is an example of a complete program in the extended language:

typedef struct Node *list;

struct Node {
int elem;
list next;

};

int main() {
printInt(length(fromTo(1,100)));
return 0;

}

list cons (int x, list xs) {
list n;
n = new Node;
n->elem = x;
n->next = xs;
return n;

}

list fromTo (int m, int n) {
if (m>n)
return (list)null;

else
return cons (m,fromTo (m+1,n));

}
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int length (list xs) {
int res = 0;
while (xs != (list)null) {
res++;
xs = xs->next;

}
return res;

}

This and a few other test programs can be found in the extensions/pointers subdirectory of
the test suite.

2.4. Object-orientation

This extension adds classes and objects to basic Javalette. From a language design point of view,
it is not clear that you would want both this and the previous extension in the same language,
but here we disregard this.

Here is a first simple program in the proposed extension:

class Counter {
int val;

void incr () {val++; return;}
int value () {return val;}

}

int main () {
Counter c;
c = new Counter;
c.incr();
c.incr();
c.incr();
int x = c.value();
printInt(x);
return 0;

}

We define a class Counter, and in main create an object and call its methods a couple of times.
The program writes 3 to stdout.

The source language exensions, from basic Javalette, are

• A new form of top-level definition: a class declaration. A class has a number of instance
variables and a number of methods.

Instance variables are private, i.e. are only visible within the methods of the class. We
could not have written c.val in main.

All methods are public; there is no way to define private methods. It would not be difficult
in principle to allow this, but we must limit the task.

There is always only one implicit constructor method in a class, with no arguments. In-
stance variables are, as all variables in Javalette, initialized to default values: numbers to
0, booleans to false and object references to null.

We support a simple form of single inheritance: a class may extend another one:
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class Point2 {
int x;
int y;

void move (int dx, int dy) {
x = x + dx;
y = y + dy;

}

int getX () { return x; }

int getY () { return y; }
}

class Point3 extends Point2 {
int z;

void moveZ (int dz) {
z = z + dz;

}

int getZ () { return z; }

}

int main () {
Point2 p;

Point3 q = new Point3;

q.move(2,4);
q.moveZ(7);
p = q;

p.move(3,5);

printInt(p.getX());
printInt(p.getY());
printInt(q.getZ());

return 0;
}

Here Point3 is a subclass of Point2. The program above prints 5, 9 and 7.

Classes are types; we can declare variables to be (references to) objects of a certain class.
Note that we have subtyping: we can do the assignment p = q; . The reverse assignment,
q = p; would be a type error. We have a strong restriction, though: we will not allow
overriding of methods. Thus there is no need for dynamic dispatch; all method calls can
be statically determined.

• There are four new forms of expression:

1. "new" Ident creates a new object, with fields initialized as described above.
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2. Expr "." Expr, is a method call; the first expression must evaluate to an object
reference and the second to a call of a method of that object.

3. "(" Ident ") null" is the null reference of the indicated class/type.

4. "self" is, within the methods of a class, a reference to the current object. All calls
to other, sibling methods of the class must be indicated as such using self, as in
self.isEmpty() from one of the test files. This requirement is natural, since the
extended Javalette, in contrast to Java, has free functions that are not methods of
any class.

2.5. Object orientation with dynamic dispatch

The restriction not to allow method override is of course severe. In this extension the restriction
is removed and subclassing with inheritance and method override implemented. This requires a
major change of implementation as compared to the previous extension. It is no longer possible
to decide statically which code to run when a message is sent to an object. Thus each object at
runtime must have a link to a class descriptor, a struct with pointers to the code of the methods
of the class. These class descriptor are linked together in a list, where a class descriptor has a
link to the descriptor of its superclass. This list is searched at runtime for the proper method to
execute. All this is discussed more in lecture 6.

2.6. Native x86 code generation.

This extension is to produce native assembler code for a real machine, preferrably x86. We may
accept code generators for other architectures, but you need to think of how we can test your
extension. Before you attempt to write a backend for another architecture, discuss your choice
with Björn and explain the testing procedure.

2.7. Study of LLVM optimization

We offer one possibility to get a credit that does not involve implementing a Javalette extension.
This is to do a more thorough study of the LLVM framework and write a report of 4-5 pages.
More precisely the task is as follows:

Look at the list of available optimization passes and choose at least three of these for further
study. Mail Björn to agree that your choice is suitable (do this before you start to work on the
extension!).

For each pass you must:

• Describe the optimization briefly; what kind of analysis is involved, how is code trans-
formed?

• Find a Javalette program that is suitable to illustrate the optimization. List the program,
the LLVM code generated by your compiler and the LLVM code that results by using
opt to apply this pass (and only this pass). In addition to the code listing, explain how
the general description in the previous item will actually give the indicated result. Part of
the task is to find a program where the pass has an interesting effect.

2.8. Further possibilities

We are willing to give credits also to other extensions, which are not as well defined. If you
want to do one of these and get credit, you must discuss it with Björn in advance. Here are some
possibilities:

• Allow functions to be statically nested.
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• Implement some form of garbage collection (the simplest is probably a reference-counting
collector).

• Provide a predefined type of lists with list comprehensions, similar to what is available in
Python.

3. The front end

Your first task is to implement a compiler front end for Javalette, i.e.

1. Define suitable data types/classes for representing Javalette abstract syntax.

2. Implement a lexer and parser that builds abstract syntax from strings.

3. Implement a type checker that checks that programs are type-correct.

4. Implement a main program that calls lexer, parser and type checker, and reports errors.

These tasks are very well understood; there is a well-developed theory and, for steps 1 and 2,
convenient tools exist that do most of the work. You should be familiar with these theories and
tools and we expect you to complete the front end during the first week of the course.

We recommend that you use the BNF converter and either Alex and Happy (if you decide to
implement your compiler in Haskell) or JLex and Cup (if you use Java). We may also allow
other implementation languages and tools, but we can not guarantee support, and you must
discuss your choice with Björn before you start. This is to make sure that we will be able to run
your compiler and that you will not use inferior tools.

We provide a BNFC source file Javalette.cf that you may use. If you already have a BNFC
file for a similar language that you want to reuse you may do so, but you must make sure that
you modify it to pass the test suite for this course.

We will accept a small number of shift/reduce conflicts in your parser; your documentation
must describe these and argue that they are harmless. Reduce/reduce conflicts are not allowed.
The provided BNFC file has the standard dangling-else shift/reduce conflict.

One thing to note is that it may be useful to implement the type-checker as a function, which
traverses the syntax and returns its input if the program is type-correct. The reason for this is
that you may actually want to modify this and decorate the syntax trees with more information
during type-checking for later use by the code generator. One example of such decoration can be
to annotate all subexpressions with type information; this will be useful during code generation.

To do this, you can add one further form of expression to your BNFC source, namely a type-
annotated expression.

4. Code generation A: Java bytecode

For the first submission, you will add a code generator for Java bytecode to your compiler. The
result of compiling the Javalette file myfile.jl, will be myfile.class, which can be executed
by an implementation of the Java virtual machine. Typically, you will run your programs with
the command java myfile.

Java class files are binary files, and it will be more convenient to work with text files. Thus your
compiler will first produce a text file myfile.j with byte code in assembly form. This file will
then be assembled to produce the binary class file.

There is no standard assembly form for Java byte code. We will use the assembler Jasmin,
which was originally released as a companion to the book The Java Virtual Machine by Jonathan
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Meyer (O’Reilly 1997). You will have to download Jasmin to your project account; instructions
for how to do this can be found on the course web site.

The official JVM report from Sun also includes an assembler-like syntax, but it is only usable as
documentation, not as input format. Jasmin’s instructions are similar to Sun’s as far as possible.

4.1. Jasmin code

The Jasmin user manual describes the instruction set, but presupposes a knowledge of the JVM.
The lectures during week 2 will discuss JVM and Jasmin code generation in detail. Here we
only give some brief remarks. With a bit of googling, you will easily find tutorials on the JVM
and Jasmin.

The JVM is a stack machine; the machine maintains a stack of values and the instruction set
contains operations that manipulate this stack. There are operations to push constants, to load
from and store to memory locations, to perform arithmetic operations and comparisons on the
top value(s), etc. In JVM bytecode, one byte is used to indicate the instruction; thus around
250 instructions can be accommodated. The instruction set is designed to give compact code.
Therefore, there are often several instructions that do the same operation, but can be used with
operands of different size.

Example There are several instructions that push an integer constant onto the stack:

• iconst_0 (size one byte) pushes integer 0. Similar instructions to push 1, 2, 3, 4, 5, 6
and -1.

• bipush n, (size two bytes), pushes n, where |n|< 128.

• sipush n, (size three bytes), pushes n, where |n|< 215.

• ldc n, (size two bytes), pushes n, where |n|< 231. Actual value of n stored elsewhere (in
constant pool). Part of instruction is one-byte index into this pool.

We recommend that you define abstract syntax for Jasmin code, with only one instruction to
push a value onto the stack. When printing your code to a file, this may be converted to many
different opcodes, depending on the type and size of the operand. In this way, you will probably
not need more than around twenty instructions in your abstract syntax.

Your code generator could conceivable generate code directly as strings, but this is considerably
less flexible and we strongly recommend to define abstract syntax for Jasmin. You may use the
BNF converter to define Jasmin abstract syntax, but it is less useful here, since you will never
parse Jasmin code. Straightforward, handwritten abstract syntax and printer is probably most
convenient.

4.2. The structure of a Jasmin file

Before the compiled code of your functions, a Jasmin file starts with the following header:

.class public myfile ; the name of the class

.super java/lang/Object ; always so in Javalette

.method public <init>()V ; standard initializer
aload_0
invokespecial java/lang/Object/<init>()V
return

.end method

.method public static main([Ljava/lang/String;)V ; standard type of main
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.limit locals 1
invokestatic myfile/main()I ; calls your main
pop
return

.end method

; then follow your functions, including main

The only non-constant text in the above is the class name myfile, which occurs twice and must
be changed according to the name of the source file. Semicolons start line comments in Jasmin,
so text following a semicolon can be omitted.

4.3 The primitive functions

For the JVM version of your compiler, you just write a Java class Runtime, which has the five
IO functions as static methods, compile it with javac and make sure that Runtime.class is
accessible in the class path when your programs are to be executed. Note that in your Java file,
you can not create a new Scanner object for each method call. A static object is the proper
choice.

4.4. An example

We give one example of a Jasmin file, as it could be produced by your compiler. It is the
iterative factorial and a main that prints fact(7). We do not repeat the preamble from the
previous subsection, but have added comments to explain the program.

.method public static main()I

.limit locals 0 ; nr of local variables

.limit stack 1 ; maximal stack size during execution
entry:

bipush 7 ; push argument
invokestatic myfile/fact(I)I ; call fact; argument will be popped, result pushed
invokestatic Runtime/printInt(I)V ; call primitive function; argument will be popped
iconst_0 ; push return value 0
ireturn

.end method

.method public static fact(I)I

.limit locals 3 ; three local vars (n, i and r) called 0, 1 and 2

.limit stack 2 ; maximal stack size is 2.
entry:
iconst_1 ; push 1
istore_1 ; store in local var 1, i.e. i, and pop
iconst_1
istore_2 ; store 1 in local var 2, i.e. r

lab0:
iload_1 ; load i
iload_0 ; load n
if_icmpgt lab2 ; if i > n, jump to lab2
goto lab1

lab1:
iload_2 ; load r to stack
iload_1 ; load i to stack
imul ; pop i and r, push i*r
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istore_2 ; store top in r and pop
iinc 1 1 ; add 1 to local var 1, i.e. i
goto lab0

lab2:
iload_2 ; load r
ireturn

.end method

The limits specifying the size of the local variables array and the maximal stack size must be
computed by your compiler and included in the Jasmin abstract syntax for a function. Thus
you will have to keep track of stack size and local variables while walking the (type-checked)
Javalette tree. When computing these sizes, note that a double value has size 2.

Variable numbers and label names have the scope of a function; each function starts numbering
local variables from 0.

4.5. Running Jasmin

Jasmin is distributed as a JAR file jasmin.jar. It takes as argument the name of a .j file,
containing Jasmin code, and it produces a .class file that can be loaded into the JVM. Note in
particular that the class file is written in the current directory; this can be overridden with the
-d command line option. Your compiler will need to use this feature, since the testing program
will expect .class files to be placed in the same directory as the .j file and the source file.
Thus, to compile foo/bar/myfile.jl, your compiler must first create foo/bar/myfile.j.
To assemble this you have to write

java -jar jasmin.jar -d foo/bar foo/bar/myfile.j

(assuming jasmin.jar is in the current directory).

To run jasmin from your compiler you will need to manipulate the file path using meth-
ods/functions from java.util.File (for Java programmers) or System.FilePath (for Haskell
programmers).

5. Testing the project

Needless to say, you should test your project extensively. We provide a testsuite of programs
and will run your compiler on these. You may download the testsuite from the course web site.
The testsuite contains both correct programs (in subdirectory testsuite/good) and illegal pro-
grams (in subdirectory testsuite/bad). For the good programs the correct output is provided
in files with suffix .output. The bad programs contain examples of both lexical, syntactical
and type errors.

Already after having produced the parser you should therefore write a main program and try
to parse all the test programs. The same holds for the type checker and so on. When you only
have the parser, you will of course pass some bad programs; those that are syntactically correct
but have type errors.

Summarizing, your compiler must

• accept and be able to compile all of the files testsuite/good/*.jl. For these files, the
compiler must print a line containing only OK to standard error, optionally followed by
arbitrary output, such as a syntax tree or other messages. The compiler must then exit
with the exit code 0.

• reject all of the files in testsuite/bad/*.jl. For these files, the compiler must print
ERROR as the first line to standard error and then give an informative error message. The
compiler must then exit with an exit code other than 0.
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Furthermore, for correct programs, your compiled programs (i.e. the .class files), must run
and give correct output.

5.1. Automated testing

We also provide a program that automatically compiles and runs all the test programs. Before
submission you must run that program to verify that your compiler behaves correctly. Our first
action when we receive your submission is to run these tests. If this run fails, we will reject your
submission without further checks, so you must make sure that this step works. See appendix B
for details. Unfortunately, we cannot supply a working test driver for the Windows platform. If
you have a Windows machine, you may do most of the development, including manual testing,
on that machine, but for final testing you should transfer your project to our lab machines and
run the test driver.

The test driver runs each good program and compares its output with the corresponding .output
file. If the program needs input, this is taken from the .input file. Note that the test driver han-
dles this; your generated code should read from stdin and write to stdout.

The tests are of course not exhaustive. It is quite possible that the grader will discover bugs in
your code even if it passes all tests.

6. Code generation B: LLVM

In the second part of the course you will change your target to LLVM, redo the back end and
optionally extend the Javalette language.

LLVM (Low Level Virtual Machine) is both an intermediate representation language and a com-
piler infrastructure, i.e. a collection of software components for manipulating (e.g. optimizing)
LLVM code and backends for various architectures. LLVM has a large user base and is actively
developed, in particular by Apple. A lot of information and code to download can be found at
the LLVM web site http://www.llvm.org.

Also LLVM code comes in two formats, a human-readable assembler format (stored in .ll
files) and a binary bitcode format (stored in.bc files). Your compiler will produce the assembler
format and you will use the LLVM assembler llvm-as to produce binary files for execution.

In addition to the assembler, the LLVM infrastructure consists of a large number of tools for op-
timizing, linking, JIT-compiling and manipulating bitcode. One consequence is that a compiler
writer may produce very simple-minded LLVM code and leave to the LLVM tools to improve
code when needed. Of course, similar remarks apply to JVM code.

6.1. LLVM code

The LLVM virtual machine is a register machine, with an infinite supply of typed, virtual reg-
isters. The LLVM intermediate language is a version of three-address code with arithmetic
instructions that take operands from two registers and place the result in a third register. LLVM
code must be in SSA (static single assignment) form, i.e. each virtual register may only be
assigned once in the program text.

The LLVM language is typed, and all instructions contain type information. This “high-level”
information, together with the “low-level” nature of the virtual machine, gives LLVM a distinc-
tive flavour.

The LLVM web site provides a wealth of information, including language references, tutorials,
tool manuals etc. The lectures during week 4 will focus on code generation for LLVM.

6.2. The structure of a LLVM file

There is less overhead in the LLVM file. But, since the language is typed, we must inform the
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tools of the types of the primitive functions:

declare void @printInt(i32)
declare void @printDouble(double)
declare void @printString(i8*)
declare i32 @readInt()
declare double @readDouble()

Here i32 is the type of 32 bit integers and i8* is the type of a pointer to an 8 bit integer (i.e., to
a character). Note that function names in LLVM always start with @.

Before running a compiled Javalette program, myfile.bc must be linked with runtime.bc, a
file implementing the primitive functions, which we will provide. In fact, this file is produced
by giving clang a simple C file with definitions such as

void printInt(int x) {
printf("%d\n",x);

}

6.3. An example

We give the same example as we did for JVM, but now in the LLVM version, myfile.ll :

define i32 @main() {
entry: %t0 = call i32 @fact(i32 7) ; function call

call void @printInt(i32 %t0)
ret i32 0

}

define i32 @fact(i32 %__p__n) {
entry: %n = alloca i32 ; allocate a variable on stack

store i32 %__p__n , i32* %n ; store parameter
%i = alloca i32
%r = alloca i32
store i32 1 , i32* %i ; store initial values
store i32 1 , i32* %r
br label %lab0 ; branch to lab0

lab0: %t0 = load i32* %i ; load i
%t1 = load i32* %n ; and n
%t2 = icmp sle i32 %t0 , %t1 ; boolean %t2 will hold i <= n
br i1 %t2 , label %lab1 , label %lab2 ; branch depending on %t2

lab1: %t3 = load i32* %r
%t4 = load i32* %i
%t5 = mul i32 %t3 , %t4 ; compute i * r
store i32 %t5 , i32* %r ; store product
%t6 = load i32* %i ; fetch i,
%t7 = add i32 %t6 , 1 ; add 1
store i32 %t7 , i32* %i ; and store
br label %lab0

lab2: %t8 = load i32* %r
ret i32 %t8
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}

We note several things:

• Registers and local variables have names starting with %.

• The syntax for function calls uses conventional parameter lists (with type info for each
parameter).

• Booleans have type i1, one bit integers.

• After initialization, we branch explicitly to lab0, rather than just falling through.

6.4. LLVM tools

Your compiler will generate a text file with LLVM code, which is conventionally stored in files
with suffix .ll. There are then several tools you might use:

• The assembler llvm-as, which translates the file to an equivalent binary format, called
the bitcode format, stored in files with suffix .bc This is just a more efficient form for
further processing. There is a disassembler llvm-dis that translates in the opposite
direction.

• The linker llvm-ld, which can be used to link together e.g. main.bc with bitcode file
runtime.bc that defines the function @printInt and the other IO functions. By default,
two files are written, a.out and a.out.bc. As one can guess from the suffix, a.out.bc
is a bitcode file which contains the definitions from all the input bitcode files. And a.out
is, as expected, an executable file; in this case just a short shell script that calls the next
tool:

• The interpreter/JIT compiler lli, which directly executes its bitcode file argument, using
a Just-In-Time compiler.

• The static compiler llc, which translates the file to a native assembler file for any of the
supported architectures.

• The analyzer/optimizer opt, which can perform a wide range of code optimizations of
bitcode.

6.5. 32 and 64 bit architectures

LLVM can generate code for both 32 and 64 bit machines, but need to be aware of which kind
of code is needed. We can specify this by specifying the layout of data on the target machine.
We will generate 32 bit code; thus your compiler must generate the following line as the first
line of every .ll file:

target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-
f32:32:32-f64:32:64-v64:64:64-v128:128:128-a0:0:64-f80:32:32-n8:16:32"

Important: The above should be one line; it is broken into two here to fit on the page.

6.6 Optimizations

To wet your appetite, let us see how the LLVM code can be optimized:
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proj> cat myfile.ll | llvm-as | opt -std-compile-opts | llvm-dis
declare void @printInt(i32)

define i32 @main() {
entry:
tail call void @printInt(i32 5040)
ret i32 0
}

define i32 @fact(i32 %__p__n) nounwind readnone {
entry:
%t23 = icmp slt i32 %__p__n, 1
br i1 %t23, label %lab2, label %lab1

lab1:
%indvar = phi i32 [ 0, %entry ], [ %i.01, %lab1 ]
%r.02 = phi i32 [ 1, %entry ], [ %t5, %lab1 ]
%i.01 = add i32 %indvar, 1
%t5 = mul i32 %r.02, %i.01
%t7 = add i32 %indvar, 2
%t2 = icmp sgt i32 %t7, %__p__n
br i1 %t2, label %lab2, label %lab1

lab2:
%r.0.lcssa = phi i32 [ 1, %entry ], [ %t5, %lab1 ]
ret i32 %r.0.lcssa
}

The first line above is the Unix command to do the optimization. We cat the LLVM assembly
code file and pipe it through the assembler, the optimizer and the disassembler. The result is an
optimized file, where we observe:

• In main, the call fact(7) has been completely computed to the result 5040. The function
fact is not necessary anymore, but remains, since we have not declared that fact is local
to this file (one can do that).

• The definition of fact has been considerably optimized. In particular, there is no more
any use of memory; the whole computation takes place in registers.

• We will explain the phi instruction in the lectures; the effect of the first instruction is
that the value of %indvar will be 0 if control comes to %lab1 from the block labelled
%entry (i.e. the first time) and the value will be the value of %i.01 if control comes from
the block labelled %lab1 (i.e. all other times). The phi instruction makes it possible to
enforce the SSA form; there is only one assignment in the text to %indvar.

If we save the optimized code in myfileOpt.bc (without disassembling it), we can link it
together with the runtime using llvm-ld myfileOpt.bc runtime.bc. If we disassemble the
resulting file a.out.bc, we get (we have edited the file slightly in inessential ways):

@fstr = internal constant [4 x i8] c"%d\0A\00"

define i32 @main() nounwind {
entry:

%t0 = getelementptr [4 x i8]* @fstr, i32 0, i32 0
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%t1 = call i32 (i8*, ...)* @printf(i8* %t0, i32 5040) nounwind
ret i32 0

}

declare i32 @printf(i8*, ...) nounwind

What remains is a definition of the format string @fstr as a global constant (\0A is \n), the
getelementpointer instruction that returns a pointer to the beginning of the format string and
a call to printf with the result value. Note that the call to printInt has been inlined, i.e.
replaced by a call to printf; so linking includes optimizations across files.

We can now run a.out.bc using the just-in-time compiler lli. Or, if we prefer, we can produce
native assembler code with llc. On my x86 machine, this gives

.text

.align 4,0x90

.globl _main
_main:

subl $12, %esp
movl $5040, 4(%esp)
movl $_fstr, (%esp)
call _printf
xorl %eax, %eax
addl $12, %esp
ret
.cstring

_fstr: ## fstr
.asciz "%d\n"

7. Hints for the extensions

7.1. One-dimensional arrays

To implement this extension, the expression new int[e] will need to allocate memory on the
heap for the array itself and for the length attribute. Further, the array elements must be accessed
by indexing. This is done differently in JVM and in LLVM.

JVM

The JVM has built-in support for heap-allocated arrays. Jasmin reflects this by providing a
number of instructions. Several of these require suitable arguments to be present on the top of
the operand stack.

• newarray <array-type> for creating an array (allocating space on the heap).

• arraylength to get the length of an array.

• astore_i for i = 0, 1, 2, 3 to store an array reference to a local variable.

• aload_i to push array reference in local variable i onto the operand stack.

• iaload to push an int array element onto the stack.

• iastore to to store an int value as an array element.

• Similar instructions daload and dastore, which apply to double arrays.
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This is discussed more in lecture 4; see also the JVM specification, chapter 6 (link from the
Resources page on the course web site).

LLVM

Also LLVM provides support for built-in arrays, but these are not automatically heap-allocated.
Instead, explicit pointers must be used. Thus, an array will have the LLVM type {i32, [0 x t
] }*, where t is the LLVM type of the elements. The first i32 component holds the length; the
second the array elements themselves. The number of elements in the array is here indicated
to be 0; it is thus your responsibility to make sure to allocate enough memory. For memory
allocation you should use the C function calloc, which initializes allocated memory to 0. You
must add a type declaration for calloc, but you do not need to worry about it at link time;
LLVM:s linker includes stdlib.

Indexing uses the getelementptr instruction, which is discussed in detail in lecture 6.

In contrast to JVM, the LLVM does not include a runtime system with garbage collection. Thus,
this extension should really include some means for reclaiming heap memory that is no longer
needed. The simplest would be to add a statement form free(a), where a is an array variable.
This would be straightforward to implement, but is not necessary to get the credit.

More challenging would be to add automatic garbage collection. LLVM offers some support
for this. If you are interested in doing this, we are willing to give further credits for that task.

7.2. Multidimensional arrays

We emphasize again that this and the following extensions only give credit in the LLVM sub-
mission.

This extension involves more work than the previous one. In particular, you must understand
the getelementpointer instruction fully and you must generate code to iteratively allocate
heap memory for subarrays.

7.3. Structures and object-orientation.

Techniques to do these extensions are discussed in lecture 7.

From an implementation point of view, we recommend that you start with the extension with
pointers and structures. You can then reuse much of the machinery developed to implement
also the first OO extension. In fact, one attractive way to implement the object extension is by
doing a source language translation to Javalette with pointers and structures.

The full OO extension requires more sophisticated techniques, to properly deal with dynamic
dispatch.

7.4. Native code generation

The starting point for this extension could be your LLVM code, but you could also start directly
from the abstract syntax. Of course, within the scope of this course you will not be able to
produce a code generator that can compete with llc, but it may anyhow be rewarding to do also
this final piece of the compiler yourself.

One major addition here is to handle function calls properly. Unlike JVM and LLVM, which
both provide some support for function calls, you will now have to handle all the machinery
with activation records, calling conventions, and jumping to the proper code before and after
the call.

There are several assemblers for x86 available and even different syntax versions. We recom-
mend that you use the NASM assembler and that you read Paul Carter’s PC assembly tutorial
(linked from course web site) before you start the project, unless you are already familiar with
x86 architecture. We do not have strong requirements on code quality for your code generator;
straightforward code generation is acceptable. In particular, you do not need to implement reg-

21



ister allocation to improve your code. This will also have serious negative consequences for the
performance of your code. Indeed, a preferrable way to get native code is to use a framework
like LLVM, which provides an extensive infrastructure for code manipulation.

An introduction to x86 assembler is given in lecture 4.

8. Collaboration and academic honesty

As mentioned before, you work individually or in groups of two in this project. You must
develop your own code, and you are not allowed to share your code with other students or to get,
or even look at, code developed by them. On the other hand, we encourage discussions among
participants in the course about the project. As long as you follow the simple and absolute rule
not to share code, we have no objections to questions asked and answered at a conceptual level.

If you do get significant help from some other participant, it is natural to acknowledge this in
your documentation file.
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Appendix A. Submission format

1. You prepare your submission by creating a new empty directory, subsequently called the
root directory. In this directory you create three subdirectories, doc, lib and src.

2. The root directory must, after building as below, contain the executable compiler jlc.
The compiler is used as follows:

• For submission A, the command jlc myFile.jl produces the file myFile.class.
As an intermediate step, it will write the Jasmin code to myFile.j and then use
jasmin to produce the class file. Note also that the .j and .class files must be in
the same directory as the .jl file. You will need to use the -d command line option
to jasmin; see section 4.5 above.

• For submission B, the command jlc myFile.jl produces the executable file a.out.
Your code will generate myFile.ll; then your compiler will call llvm-as and
llvm-ld to assemble and link.

• Optionally, if you have chosen to implement a native code generator, the executable
is jlc_ARCH, where ARCH is a CPU architecture such as x86. The command
jlc_ARCH myFile.ll should produce an assembly file myFile.s and an exe-
cutable file a.out.

The compiler may be a shell script that calls files in src, or a symbolic link.

3. The subdirectory src must contain all necessary source code. In this directory, one should
be able to build your compiler using gmake. Thus the directory contains

• The BNF Converter source file, if the tool has been used.

• Alex/Lex/JLex and Happy/Yacc/Cup source files.

• Program modules: abstract syntax, lexer, parser, type checker, code generator, top
level program.

• A Makefile for building the compiler from source. The Makefile should at least
have these targets:

– A default target (the one that is run when the command gmake is issued). This
target should compile all source files in the compiler, and any runtime library
files. It does not need to regenerate any source files generated by BNFC, or
by any of the parser and lexer generators. After running gmake in the source
directory, the compiler in the root directory should work without further actions
from the user.

– A clean target that removes all files produced during building.

Note that src should not contain obsolete files, backup files or other unnecessary files.

4. In the lib directory you place the following files, as needed:

• For submission A, jasmin.jar, which will be needed by your compiler.

• For submission A, also the file Runtime.class which implements the primitive
IO functions printInt etc. You must produce this file yourself by writing and
compiling Runtime.java.

• For submission B, you place here runtime.bc, an LLVM bitcode file with the same
functions. This file will be provided by us.

• If you choose to do a native code generator for submission B, you place here also
the corresponding file runtime.o, produced by writing and compiling a C file.
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• The doc directory must contain one file in html, ps, plain ascii, or pdf format (pro-
prietary formats not allowed), with the following content:

– An explanation of how the compiler is used (what options, what output, etc)
– A specification of the Javalette language (if produced by BNF converter, you

may just refer to your BNFC source file).
– A list of shift/reduce conficts in your parser, if you have such conflicts, and an

analysis of them.
– For submission B, an explicit list of optional features implemented.
– If applicable, a list of features not implemented and the reason why.

5. If your compiler jlc is a shell script, you may also place this file here before building the
tar ball.

6. When you have prepared everything, you create a compressed tar ball:

tar -zcf partA-1.tar.gz doc lib src

This produces the file partA-1.tar.gz that you upload to Fire. We suggest the naming
scheme partX-Y.tar.gz where X is A or B and Y is your version number (Y=1 the first
time you submit, and if your submission is rejected and you must resubmit, the next has
Y=2 etc).

If you prefer, you may compress with bzip2 instead of gzip.

Appendix B. The tester

The tester is provided as a gzipped tar ball, which can be downloaded from the course web site.

This directory contains a test driver (Grade.hs, RunCommand.hs and KompTest.hs) that can
be used to run the tests for your project. The subdirectory testsuite contains Javalette test
programs.

Installation

The tester requires a Linux (or Mac OS X, or other Unix) environment and that the Haskell
compiler GHC is available. You will have to do

make

in this directory to compile the test program. The result is the executable program Grade in the
same directory. To use the tester after installation does not require any Haskell knowledge.

If you work on your own Windows machine, we cannot assist you in making the tester work.
You should anyhow download the tester to get access to the testsuite in directory testsuite.
Before submitting, you must upload your project to the lab machines and verify the submission.

Running the tests

Assume that your submission directory is dir and that your compiler is called jlc. Assume also
that dir/lib contains the runtime support file (Runtime.class for submission A, runtime.bc
and possibly runtime.o for submission B). For submission A, also jasmin.jar should be in
dir/lib.

The test driver takes a number of options and two directories as command line arguments. The
possible options are
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-s <name> The name of your compiler is name (default is jlc).
-b JVM Target files are JVM .class file.
-b LLVM Target files are LLVM .bc files.
-b x86 Target files are x86 .o files.
-x <extension> Implemented extensions.

The first of the two path arguments specifies where to find the directory testsuite which
contains the testsuite. The second specifies your submission directory. Thus, if your compiler
is called jlc (as it should!), you may place yourself in the tester directory and run

./Grade . dir

to compile all the basic javalette programs. The tester will not attempt to run the good programs,
so you may do the above already when you have the parser working, and then when you have
the typechecker working. Note that it is essential that your compiler writes one line to stderr,
containing OK for correct programs and ERROR for incorrect programs.

To also run the good programs, you must specify the backend as indicated above, i.e. for
submission A

./Grade -b JVM . dir

The test driver will report its activities in compiling the test programs and running the good
ones. If your compiler is correct, output will end as follows:

Summary:
0 compiling basic javalette (48/48)
0 running basic (JVM) (22/22)

Credits total: 0

All 48 test programs were compiled and gave correct indication OK or ERROR to stderr. The
22 correct programs were run and gave correct output. Since no extensions were tested, no
credits were earned.

You may specify several extensions, as follows:
arrays1 One-dimensional arrays and for loop.
arrays2 Multi-dimensional arrays.
pointers Structures and pointers.
objects1 Classes and objects, without method override.
objects2 Method override, dynamic dispatch.

Testing your submission

Your submission must be structured as specified in Appendix A. We suggest that, after having
prepared your tar ball, you place it in an empty directory dir1 and run

./Grade -b JVM . dir1

from the test driver directory. The grading program, when it finds a tar ball in the submission
directory, starts by extracting and building your compiler, before running the test suite. This is
how we test your submission, so you can check that building succeeds before you submit.

25


