Relax and do Something Random:
 The MAXCUT Approximation of Goemans and Williamson

Michael McCoy

January 29, 2010

What is a cut?

- Given a graph (V, E) with edge weights $w_{i j} \geq 0$,

a cut S is a subset of the vertices $S \subset V$.
- The weight of the cut $\omega(S)$ is the sum of the weights of the edges that "cross the cut":

$$
\omega(S)=\sum_{i \in S, j \notin S} w_{i j}
$$

Cut Example

- Here, $S=\{1,4,5\}$.

- The weight of the cut $\omega(\{1,4,5\})$ is

$$
\begin{equation*}
\omega(\{1,4,5\})=w_{12}+w_{13}+w_{24}+w_{25}+w_{34} \tag{1}
\end{equation*}
$$

MAXCUT

- Determining a subset $S \subset V$ that maximizes $\omega(S)$ is the MAXCUT problem:

$$
\begin{array}{cl}
\text { maximize } & \omega(S) \\
\text { subject to } & S \subset V
\end{array}
$$

- Equiavelently, we can write MAXCUT as

$$
\begin{array}{cl}
\text { maximize } & \frac{1}{4} \sum_{i, j} w_{i j}\left(1-\sigma_{i} \sigma_{j}\right) \tag{MAXCUT'}\\
\text { subject to } & \sigma_{i}= \pm 1 \text { for all } i \in V
\end{array}
$$

- Equivalent by setting $i \in S \Longleftrightarrow \sigma_{i}=+1$.

MAXCUT

- Determining a subset $S \subset V$ that maximizes $\omega(S)$ is the MAXCUT problem:

$$
\begin{array}{ll}
\text { maximize } & \omega(S) \\
\text { subject to } & S \subset V
\end{array}
$$

- Equiavelently, we can write MAXCUT as

$$
\begin{array}{cl}
\text { maximize } & \frac{1}{4} \sum_{i, j} w_{i j}\left(1-\sigma_{i} \sigma_{j}\right) \tag{MAXCUT'}\\
\text { subject to } & \sigma_{i}= \pm 1 \text { for all } i \in V
\end{array}
$$

- Equivalent by setting $i \in S \Longleftrightarrow \sigma_{i}=+1$.
- MAXCUT is known to be NP-complete.

Relax

- Key Idea: Replace integers $\left|\sigma_{i}\right|=1$ with norm-1 vectors $\left\|u_{i}\right\|=1$, and scalar multiplication with vector multiplication.

$$
\begin{align*}
\operatorname{maximize} & \frac{1}{4} \sum_{i, j} w_{i j}\left(1-\left\langle u_{i}, u_{j}\right\rangle\right) \tag{RELAX}\\
\text { subject to } & \left\|u_{i}\right\|=1 \text { for all } i \text { in } V
\end{align*}
$$

- This is a relaxation of MAXCUT since the original problem is contained in this problem, e.g., take $u_{i}=(\pm 1,0, \ldots, 0)$.
- We will show later how to compute the u_{i} 's using a semidefinite program.

A key result

Lemma

Let r be a random ${ }^{1}$ vector. For any unit vectors u_{i} and u_{j},

$$
\mathbb{P}\left(\operatorname{sign}\left(\left\langle u_{i}, r\right\rangle\right) \neq \operatorname{sign}\left(\left\langle u_{j}, r\right\rangle\right)\right)=\frac{\arccos \left(\left\langle u_{i}, u_{j}\right\rangle\right)}{\pi}
$$

${ }^{1}$ By which me mean that r is drawn from a spherically symmetric distribution with zero mass at the origin.

A key result

Lemma

Let r be a random ${ }^{1}$ vector. For any unit vectors u_{i} and u_{j},

$$
\mathbb{P}\left(\operatorname{sign}\left(\left\langle u_{i}, r\right\rangle\right) \neq \operatorname{sign}\left(\left\langle u_{j}, r\right\rangle\right)\right)=\frac{\arccos \left(\left\langle u_{i}, u_{j}\right\rangle\right)}{\pi}
$$

As an immediate consequence of this Lemma, we have that

$$
\mathbb{E}\left[\frac{1}{2}-\frac{1}{2} \operatorname{sign}\left(\left\langle u_{i}, r\right\rangle\right) \operatorname{sign}\left(\left\langle u_{j}, r\right\rangle\right)\right]=\frac{1}{\pi} \arccos \left(\left\langle u_{i}, u_{j}\right\rangle\right) .
$$

${ }^{1}$ By which me mean that r is drawn from a spherically symmetric distribution with zero mass at the origin.

Proof.

Using a suitable rotation, we can assume without loss that $u_{i}=(1,0, \ldots, 0)$ and $u_{j}=(a, b, 0, \ldots, 0)$. (Why?)

Proof.

The signs of $\left\langle u_{i}, r\right\rangle$ and $\left\langle u_{j}, r\right\rangle$ are different if and only if the tangent plane of r separates u_{i} and u_{j}.

Proof.

The signs of $\left\langle u_{i}, r\right\rangle$ and $\left\langle u_{j}, r\right\rangle$ are different if and only if the tangent plane of r separates u_{i} and u_{j}.

Here, the tangent plane does not separate u_{i} and u_{j}.

Proof.

The signs of $\left\langle u_{i}, r\right\rangle$ and $\left\langle u_{j}, r\right\rangle$ are different if and only if the tangent plane of r separates u_{i} and u_{j}.

Here, the tangent plane separates u_{i} and u_{j}.

Proof.

A random line bisects an angle of $\theta_{i j}$ with probability $\frac{\theta_{i j}}{\pi}$,

Proof.

A random line bisects an angle of $\theta_{i j}$ with probability $\frac{\theta_{i j}}{\pi}$, but $\cos \left(\theta_{i j}\right)=\left\langle u_{i}, u_{j}\right\rangle$,

Proof.

A random line bisects an angle of $\theta_{i j}$ with probability $\frac{\theta_{i j}}{\pi}$, but $\cos \left(\theta_{i j}\right)=\left\langle u_{i}, u_{j}\right\rangle$,
so that $\frac{\theta_{i j}}{\pi}=\frac{\arccos \left(\left\langle u_{i}, u_{j}\right\rangle\right)}{\pi}$.

Converting back to scalars

Suppose we have the vectors u_{i} that solve RELAX. Then do the following:

1. Choose a random vector r.
2. Set $\hat{\sigma}_{i}=\operatorname{sign}\left(\left\langle u_{i}, r\right\rangle\right)$ for all $i \in V$.
3. Equivalently, set $i \in \hat{S}$ if $\operatorname{sign}\left(\left\langle u_{i}, r\right\rangle\right) \geq 0$.

Converting back to scalars

Theorem
Let S_{*} be a cut that optimizes MAXCUT. Then

$$
\mathbb{E}[\omega(\hat{S})] \geq \alpha \omega\left(S_{*}\right)
$$

where $\alpha>0.87$.

Converting back to scalars

Theorem
Let S_{*} be a cut that optimizes MAXCUT. Then

$$
\mathbb{E}[\omega(\hat{S})] \geq \alpha \omega\left(S_{*}\right)
$$

where $\alpha>0.87$.
For the proof, we will use the fact that

$$
\frac{\arccos (y)}{\pi} \geq \alpha \frac{1-y}{2} \text { for all }-1 \leq y \leq 1
$$

where

$$
\alpha=\min _{0 \leq \theta \leq \pi} \frac{2 \theta}{\pi(1-\cos (\theta))}>0.87
$$

Proof.

By the corollary to the Lemma and our fact,

$$
\mathbb{E}[\omega(\hat{S})]=\frac{1}{2} \sum_{i, j} w_{i j} \frac{\arccos \left\langle u_{i}, u_{j}\right\rangle}{\pi} \geq \frac{\alpha}{4} \sum_{i, j} w_{i j}\left(1-\left\langle u_{i}, u_{j}\right\rangle\right)
$$

Since u_{i} and u_{j} maximize maximize the right-hand side over the unit sphere, by restriction, we have

$$
\mathbb{E}[\omega(\hat{S})] \geq \frac{\alpha}{4} \sum_{i, j} w_{i j}\left(1-\sigma_{i} \sigma_{j}\right)
$$

for any $\sigma_{i}= \pm 1$. In particular, the inequality holds for the maximum possible choice of signs, which by definition is $\alpha \omega\left(S_{*}\right)$.

The step to semidefinite

- For a square matrix Σ, following are equivalent:

1. $\Sigma \succcurlyeq 0, \Sigma_{i i}=1$, and $\operatorname{rank}(\Sigma)=1$,
2. $\Sigma=\sigma \sigma^{t}$, where $\sigma_{i}= \pm 1$.

- Setting $(W)_{i j}=w_{i j}$, note that

$$
\begin{equation*}
\sum_{i, j} w_{i j} \sigma_{i} \sigma_{j}=\operatorname{tr}\left(W \sigma \sigma^{t}\right) \tag{2}
\end{equation*}
$$

- Thus, MAXCUT is equivalent to

$$
\begin{array}{ll}
\text { maximize } & \frac{1}{4} \sum_{i, j} w_{i j}-\frac{1}{4} \operatorname{tr}(W \Sigma) \\
\text { subject to } & \Sigma \succcurlyeq 0, \Sigma_{i i}=1, \text { and } \operatorname{rank}(\Sigma)=1 \tag{3}
\end{array}
$$

Semidefinite relaxation

- By dropping the rank-1 restriction, (3) becomes a semidefinite program:

$$
\begin{align*}
\text { minimize } & \operatorname{tr}(W \Sigma) \\
\text { subject to } & \left\{\begin{array}{l}
\Sigma \succcurlyeq 0 \\
\Sigma_{i i}=1
\end{array}\right. \tag{4}
\end{align*}
$$

- Setting $\Sigma=U^{t} U$ via a Cholesky factorization, the restriction $\Sigma_{i i}=1$ implies that U has unit-norm columns.
- That is, (4) is equivalent to RELAX.

How to compute it

- For large problems, the current state-of-the-art algorithm for computing the solution to these semidefinite programs is available in Burer and Montiero [2].
- For moderately sized problems, use Matlab's CVX package [3].

How to compute it

- For large problems, the current state-of-the-art algorithm for computing the solution to these semidefinite programs is available in Burer and Montiero [2].
- For moderately sized problems, use Matlab's CVX package [3].

The entire code using CVX:

```
... % define W, N
cvx_begin sdp
    variable
        Sigma(N,N) symmetric
    minimize
        trace(W*Sigma)
    subject to
        Sigma >= 0;
        diag(Sigma) == ones(N,1);
cvx_end
U = chol(Sigma);
sigma = sign(U*randn(N,1));
```


How to compute it

- For large problems, the current state-of-the-art algorithm for computing the solution to these semidefinite programs is available in Burer and Montiero [2].
- For moderately sized problems, use Matlab's CVX package [3].

The entire code using CVX:

```
... % define W, N
cvx_begin sdp
    variable
        Sigma(N,N) symmetric
    minimize
        trace(W*Sigma)
    subject to
        Sigma >= 0;
        diag(Sigma) == ones(N,1);
cvx_end
U = chol(Sigma); % May fail occasionally due to numerical inaccuracy
sigma = sign(U*randn(N,1));
```


For More Details

國 M.X. Goemans and D.P. Williamson.
Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of the ACM (JACM), 42(6):1145, 1995.
S. Burer and R. Monteiro.

Local Minima and Convergence in Low-Rank Semidefinite Programming.
Mathematical Programming, 103(3):427-444, December 2004.
围 M. Grant and S. Boyd.
CVX: Matlab software for disciplined convex programming (web page and software)
http://stanford.edu/~boyd/cvx

