

Relax and do Something Random: The MAXCUT Approximation of Goemans and Williamson

Michael McCoy

January 29, 2010

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

What is a cut?

• Given a graph (V, E) with edge weights $w_{ij} \ge 0$,

a cut S is a subset of the vertices $S \subset V$.

 The weight of the cut ω(S) is the sum of the weights of the edges that "cross the cut":

$$\omega(S) = \sum_{i \in S, \ j \notin S} w_{ij}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Cut Example

• The weight of the cut $\omega(\{1,4,5\})$ is

$$\omega(\{1,4,5\}) = w_{12} + w_{13} + w_{24} + w_{25} + w_{34}.$$
(1)

 Determining a subset S ⊂ V that maximizes ω(S) is the MAXCUT problem:

$$\begin{array}{ll} \text{maximize} & \omega(S) \\ \text{subject to} & S \subset V \end{array} \tag{MAXCUT}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Equiavelently, we can write MAXCUT as

maximize
$$\frac{1}{4} \sum_{i,j} w_{ij} (1 - \sigma_i \sigma_j)$$

subject to $\sigma_i = \pm 1$ for all $i \in V$ (MAXCUT')

• Equivalent by setting $i \in S \iff \sigma_i = +1$.

 Determining a subset S ⊂ V that maximizes ω(S) is the MAXCUT problem:

$$\begin{array}{ll} \text{maximize} & \omega(S) \\ \text{subject to} & S \subset V \end{array} \tag{MAXCUT}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Equiavelently, we can write MAXCUT as

maximize
$$\frac{1}{4} \sum_{i,j} w_{ij} (1 - \sigma_i \sigma_j)$$

subject to $\sigma_i = \pm 1$ for all $i \in V$ (MAXCUT')

- Equivalent by setting $i \in S \iff \sigma_i = +1$.
- MAXCUT is known to be *NP*-complete.

• Key Idea: Replace integers $|\sigma_i| = 1$ with norm-1 vectors $||u_i|| = 1$, and scalar multiplication with vector multiplication.

maximize
$$\frac{1}{4} \sum_{i,j} w_{ij} (1 - \langle u_i, u_j \rangle)$$

subject to $||u_i|| = 1$ for all *i* in *V* (RELAX)

- This is a *relaxation* of MAXCUT since the original problem is contained in this problem, e.g., take u_i = (±1,0,...,0).
- We will show later how to compute the *u_i*'s using a semidefinite program.

Lemma Let r be a random¹ vector. For any unit vectors u_i and u_j ,

$$\mathbb{P}(\operatorname{sign}(\langle u_i, r \rangle) \neq \operatorname{sign}(\langle u_j, r \rangle)) = \frac{\operatorname{arccos}(\langle u_i, u_j \rangle)}{\pi}$$

¹By which me mean that r is drawn from a spherically symmetric distribution with zero mass at the origin.

Lemma Let r be a random¹ vector. For any unit vectors u_i and u_j ,

$$\mathbb{P}(\operatorname{sign}(\langle u_i, r \rangle) \neq \operatorname{sign}(\langle u_j, r \rangle)) = \frac{\operatorname{arccos}(\langle u_i, u_j \rangle)}{\pi}$$

As an immediate consequence of this Lemma, we have that

$$\mathbb{E}\left[\frac{1}{2} - \frac{1}{2}\operatorname{sign}(\langle u_i, r \rangle)\operatorname{sign}(\langle u_j, r \rangle)\right] = \frac{1}{\pi}\operatorname{arccos}(\langle u_i, u_j \rangle).$$

¹By which me mean that r is drawn from a spherically symmetric distribution with zero mass at the origin.

Using a suitable rotation, we can assume without loss that $u_i = (1, 0, ..., 0)$ and $u_j = (a, b, 0, ..., 0)$. (Why?)

The signs of $\langle u_i, r \rangle$ and $\langle u_j, r \rangle$ are different if and only if the tangent plane of r separates u_i and u_j .

◆□> ◆□> ◆三> ◆三> ・三 のへの

The signs of $\langle u_i, r \rangle$ and $\langle u_j, r \rangle$ are different if and only if the tangent plane of r separates u_i and u_j .

Here, the tangent plane does not separate u_i and u_j .

The signs of $\langle u_i, r \rangle$ and $\langle u_j, r \rangle$ are different if and only if the tangent plane of r separates u_i and u_j .

Here, the tangent plane separates u_i and u_i .

Proof. A random line bisects an angle of θ_{ij} with probability $\frac{\theta_{ij}}{\pi}$,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A random line bisects an angle of θ_{ij} with probability $\frac{\theta_{ij}}{\pi}$, but $\cos(\theta_{ij}) = \langle u_i, u_j \rangle$,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

A random line bisects an angle of θ_{ij} with probability $\frac{\theta_{ij}}{\pi}$, but $\cos(\theta_{ij}) = \langle u_i, u_j \rangle$, so that $\frac{\theta_{ij}}{\pi} = \frac{\arccos(\langle u_i, u_j \rangle)}{\pi}$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Converting back to scalars

Suppose we have the vectors u_i that solve RELAX. Then do the following:

- 1. Choose a random vector r.
- 2. Set $\hat{\sigma}_i = \operatorname{sign}(\langle u_i, r \rangle)$ for all $i \in V$.
- 3. Equivalently, set $i \in \hat{S}$ if sign $(\langle u_i, r \rangle) \ge 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Converting back to scalars

Theorem Let S_* be a cut that optimizes MAXCUT. Then

 $\mathbb{E}[\omega(\hat{S})] \geq \alpha \, \omega(S_*),$

where $\alpha > 0.87$.

Converting back to scalars

Theorem Let S_* be a cut that optimizes MAXCUT. Then

$$\mathbb{E}[\omega(\hat{S})] \ge \alpha \, \omega(S_*),$$

where $\alpha > 0.87$.

For the proof, we will use the fact that

$$rac{lpha \operatorname{rccos}(y)}{\pi} \geq lpha rac{1-y}{2} ext{ for all } -1 \leq y \leq 1,$$

where

$$\alpha = \min_{0 \le \theta \le \pi} \frac{2\theta}{\pi(1 - \cos(\theta))} > 0.87.$$

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへで

Introduction: MAXCUT	Relaxation	Key Lemma	The Theorem	The SDP

By the corollary to the Lemma and our fact,

$$\mathbb{E}[\omega(\hat{S})] = \frac{1}{2} \sum_{i,j} w_{ij} \frac{\arccos \langle u_i, u_j \rangle}{\pi} \geq \frac{\alpha}{4} \sum_{i,j} w_{ij} (1 - \langle u_i, u_j \rangle).$$

Since u_i and u_j maximize maximize the right-hand side over the unit sphere, by restriction, we have

$$\mathbb{E}[\omega(\hat{S})] \geq rac{lpha}{4} \sum_{i,j} \mathsf{w}_{ij}(1 - \sigma_i \sigma_j).$$

for any $\sigma_i = \pm 1$. In particular, the inequality holds for the maximum possible choice of signs, which by definition is $\alpha \omega(S_*)$.

The step to semidefinite

• For a square matrix $\boldsymbol{\Sigma},$ following are equivalent:

- 1. $\Sigma \succeq 0$, $\Sigma_{ii} = 1$, and rank(Σ) = 1, 2. $\Sigma = \sigma \sigma^t$, where $\sigma_i = \pm 1$.
- Setting $(W)_{ij} = w_{ij}$, note that

$$\sum_{i,j} w_{ij}\sigma_i\sigma_j = \operatorname{tr}(W\sigma\sigma^t) \tag{2}$$

• Thus, MAXCUT is equivalent to

$$\begin{array}{ll} \text{maximize} & \frac{1}{4} \sum_{i,j} w_{ij} - \frac{1}{4} \operatorname{tr}(W\Sigma) \\ \text{subject to} & \Sigma \succcurlyeq 0, \ \Sigma_{ii} = 1, \ \text{and} \ \operatorname{rank}(\Sigma) = 1. \end{array}$$

Semidefinite relaxation

• By dropping the rank-1 restriction, (3) becomes a semidefinite program:

minimize
$$tr(W\Sigma)$$

subject to $\begin{cases} \Sigma \geq 0, \\ \Sigma_{ii} = 1 \end{cases}$ (4)

- Setting $\Sigma = U^t U$ via a Cholesky factorization, the restriction $\Sigma_{ii} = 1$ implies that U has unit-norm columns.
- That is, (4) is equivalent to RELAX.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

How to compute it

- For large problems, the current state-of-the-art algorithm for computing the solution to these semidefinite programs is available in Burer and Montiero [2].
- For moderately sized problems, use MATLAB'S CVX package [3].

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

How to compute it

- For large problems, the current state-of-the-art algorithm for computing the solution to these semidefinite programs is available in Burer and Montiero [2].
- For moderately sized problems, use MATLAB'S CVX package [3].

The entire code using CVX:

```
...% define W, N
cvx_begin sdp
variable
Sigma(N,N) symmetric
minimize
trace(W*Sigma)
subject to
Sigma >= 0;
diag(Sigma) == ones(N,1);
cvx_end
U = chol(Sigma);
sigma = sign(U*randn(N,1));
```

How to compute it

- For large problems, the current state-of-the-art algorithm for computing the solution to these semidefinite programs is available in Burer and Montiero [2].
- For moderately sized problems, use MATLAB'S CVX package [3].

The entire code using CVX:

```
... % define W, N
cvz_begin sdp
variable
Sigma(N,N) symmetric
minimize
trace(W*Sigma)
subject to
Sigma >= 0;
diag(Sigma) == ones(N,1);
cvx_end
U = chcl(Sigma); % Max foil coordinably doe
```

```
U = chol(Sigma); % May fail occasionally due to numerical inaccuracy
```

```
sigma = sign(U*randn(N,1));
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

For More Details

M.X. Goemans and D.P. Williamson.

Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. *Journal of the ACM (JACM)*, 42(6):1145, 1995.

S. Burer and R. Monteiro. Local Minima and Convergence in Low-Rank Semidefinite Programming.

Mathematical Programming, 103(3):427–444, December 2004.

M. Grant and S. Boyd.

CVX: Matlab software for disciplined convex programming (web page and software) http://stanford.edu/~boyd/cvx