
Algorithmica
DOI 10.1007/s00453-008-9252-5

Multiline Addressing by Network Flow

Friedrich Eisenbrand · Andreas Karrenbauer ·
Martin Skutella · Chihao Xu

Received: 29 November 2006 / Accepted: 28 October 2008
© The Author(s) 2008. This article is published with open access at Springerlink.com

Abstract We consider an optimization problem arising in the design of controllers
for OLED displays. Our objective is to minimize amplitude of the electrical current
through the diodes which has a direct impact on the lifetime of such a display. Mod-
eling the problem in mathematical terms yields a class of network flow problems
where we group the arcs and pay in each group only for the arc carrying the max-
imum flow. We develop (fully) combinatorial approximation heuristics suitable for
being implemented in the hardware of a control device that drives an OLED display.

Keywords Combinatorial optimization · Network design · OLED · Algorithm
engineering · Matrix decomposition

1 Introduction

Organic Light Emitting Diode (OLED) displays are considered as the displays of
the future. The image and video displayed is brilliant, has a very high contrast and

M. Skutella supported by DFG Research Center MATHEON in Berlin.

F. Eisenbrand
EPFL, 1015 Lausanne, Switzerland
e-mail: friedrich.eisenbrand@epfl.ch

A. Karrenbauer (!)
Max-Planck-Institut für Informatik, 66123 Saarbrücken, Germany
e-mail: karrenba@mpi-inf.mpg.de

M. Skutella
TU Berlin, Institut für Mathematik, Str. des 17, Juni 136, 10623 Berlin, Germany
e-mail: skutella@math.tu-berlin.de

C. Xu
Lehrstuhl für Mikroelektronik, Universität des Saarlandes, Saarbrücken, Germany
e-mail: chihao.xu@lme.uni-saarland.de

mailto:chihao.xu@lme.uni-saarland.de
mailto:friedrich.eisenbrand@epfl.ch
mailto:karrenba@mpi-inf.mpg.de
mailto:skutella@math.tu-berlin.de

Algorithmica

Fig. 1 Decomposition of an image with k = 2 such that every two rows of the double parts have the same
content and the sum of all row maxima is minimized

a viewing angle of nearly 180 degrees. It reacts within 10 microseconds which is
much faster than the eye can catch and is therefore perfect for video applications.
The display is flexible and above all can be produced at low cost. One major reason
why there are only small-size displays on the market is the insufficient lifetime of
state of the art OLED displays.

What causes this short lifetime? Briefly, this is because of the high electrical cur-
rents through the diodes that occur with the traditional addressing techniques. Though
it seems that every pixel shines continuously with a certain brightness, the images are
displayed row-after-row. This works at a sufficiently high frame rate since the per-
ception of the eye is the average intensity emitted by each diode. The problem is that
this row-by-row activation scheme causes long idle times of the diodes and extreme
stress when they are activated.

To overcome this problem one considers now to activate two, or more consecutive
rows simultaneously [1]. For passive matrix displays rows can only be simultaneously
displayed if their content is equal.

Therefore the goal is to decompose an image into several subframes, the overlay
(addition) of which is equal to the original image. Fig. 1 shows such a decomposi-
tion. The first image (single) is traditionally displayed row-after-row. In the other two
images (double) every two rows have the same content so that one can display these
rows simultaneously. As one can see in Fig. 1, the images at the bottom are much
darker than the original one. The decomposition should be in such a way that the am-
plitudes of the electrical current which are needed to display the picture are as small
as possible.

In this paper we develop an algorithm to tackle this optimization problem. Our ob-
jective is to come up with a combinatorial approximation algorithm that will be im-
plemented in hardware to actually drive such an OLED display. This imposes some
restrictions on the methods and techniques we shall use. First of all, such an algo-
rithm has to compute a feasible solution in realtime, i.e. below the perception of a
human eye. Moreover, it should be implemented on a chip of low cost meaning that
we are not able to e.g. use a general purpose LP solver or a general purpose CPU
with an IEEE floating point unit. Therefore, we look for algorithms that are suffi-
ciently simple and easy to implement. Moreover, the algorithms should not suffer
from numerical instabilities. Also exact rational arithmetic is not an option for such

Algorithmica

a realtime application. We rather want to use only fixed precision number types, i.e.
integers of fixed size. To meet these economic constraints, we aim at a fully combi-
natorial algorithm using only addition, subtraction, and comparison.

Contributions of this Paper

First, we model this optimization problem as a certain network design problem. We
present a concise formulation where the arcs are partitioned into groups and only the
arc with the highest flow in each group is charged and one as a covering (integer)
linear program with an exponential number of constraints. For the latter case, we de-
velop linear time separation routines which are required to solve the LP relaxation
with the ellipsoid method [2, 3] or with a cutting-plane approach [4] or to solve it
approximately [5] with known frameworks. We then propose an efficient fully com-
binatorial heuristic which is based on the separation of these constraints and satisfies
the above requirements. Our implementation shows that this heuristic is very close to
the optimum.

Related Work

Subsequently, the models and algorithms presented in this paper have served as the
basis for further developments [6, 7]. In particular, the special case of black/white
images is considered in [7]. For that case, a polynomial-time algorithm and tight
competitive ratios for the natural online problem with fixed look-ahead are presented,
which helped to improve the heuristics for the general case introduced in this paper.
Other approaches based on Non-negative Matrix Factorization [8, 9] have been out-
lined in [10] and [11]. Network flow techniques have been applied to other matrix
decomposition problems occurring in cancer therapy [12].

2 Technical Background

To understand the objective of our optimization problem, we need to explain in an
informal way how OLED displays work. An OLED display has a matrix structure
with n rows and m columns. At any crossover between a row and a column there is a
vertical diode which works as a pixel, see Fig. 2.

The image itself is given as an integral n × m matrix (rij) ∈ {0, . . . ,!}n×m rep-
resenting its RGB values. The number ! determines the color depth, e.g. ! = 255
for 16.7 million colors. Since there are only n + m contacts available, a specific ad-
dressing technique is needed. We explain one technique (pulse width modulation) in
a simplified way in the following. Consider the contacts for the rows and columns as
switches. If the switch of row i and column j is closed, the pixel (i, j) shines with a
brightness or intensity I which is common to all row-column pairs. An image has to
be displayed within a certain time frame Tf . The value rij determines that within the
time-frame Tf , the switches i and j have to be simultaneously closed for the time

tij = rij · Tf

I
(1)

Algorithmica

Fig. 2 Scheme of the electrical
circuit of a display

Fig. 3 An example
decomposition

in total. At a sufficient high frame rate e.g. 50 Hz, the perception by the eye is the
average value of the light.

Currently, drivers for OLED displays display the image in a row-by-row fashion.
This means that the switches for the rows are activated one after the other. While
row i is active, column j has to be active for the time tij so row i is finished after
max{tij | j = 1, . . . ,m} time units. The time which is required to display the image
is consequently T (I) = ∑n

i=1 max{tij | j = 1, . . . ,m}. The intensity I has to be high
enough such that T (I) ≤ Tf holds.

Equation (1) shows that the time tij is inversely proportional to the value I . The
aforementioned short lifetime of today’s OLED displays is mainly due to the high
value of I which is necessary to display images with a sufficient frame rate. This
means that the peak energy which has to be emitted by the diodes of the display is
very high while on the other hand, the diodes stay idle most of the time, see [13].
The high amplitudes of electrical current which alternate with long idle times put the
diodes under a lot of stress, which results in a short lifetime.

In this paper, we aim to overcome this problem by a different driving mechanism.
The simple but crucial observation is that, if two rows have the same content, we
could drive them simultaneously and thereby we would save half of the time neces-
sary for the two rows. Therefore the value of I could be reduced until T (I) = Tf .

Consider the example in Fig. 3. Suppose here that initially Tf /I = 1. If the image
is displayed row-by-row, then the minimum time which is needed to display the image
is 238+237+234+232+229 = 1170 time units. But we can do better by a suitable
decomposition of the image into three matrices. In the first one every even row is
equal to its odd predecessor and in the second one every odd row is equal to its even
predecessor with zero-rows, where there is no predecessor available respectively. The
remainder is put into an offset matrix that is driven in the traditional way. By driving
the equal rows simultaneously, we require only 82 + 41 + 155 + 191 + 156 + 38 +

Algorithmica

F (2) =

0 82 25
112 155 3

0 41 22
189 191 0

 , F (1) =

109 156 3
0 0 0
38 38 0
0 0 0
38 38 19

Fig. 4 Compact representation of the example decomposition of Fig. 3

38 = 701 time units. This means that we could reduce I and therefore the amplitude
of the electrical current by roughly 40%.

We could save even more by driving 3,4,5, . . . rows simultaneously. Of course
there is a saturation somewhere, unless the image is totally homogeneous. On our
benchmark pictures, we observed that it is not worth to consider more than 6 simul-
taneously driven rows.

Since we only need to store the contents of the common part once, a decom-
position where up to k consecutive rows are combined can be stored in k matrices
F (1), . . . ,F (k) not larger than the original image (see Fig. 4).

3 The Network Model

For the sake of simplicity, we first consider the case in which two consecutive rows
can be activated simultaneously. Let R = (rij) ∈ {0, . . . ,!}n×m be the matrix rep-
resenting the picture. To decompose R we need to find matrices F (1) = (f

(1)
ij) and

F (2) = (f
(2)
ij) where F (1) represents the offset part and F (2) the common part. More

precisely, the i-th row of matrix F (2) represents the common part of rows i and i + 1.
In order to get a valid decomposition of R, the matrices F (1) and F (2) must fulfill the
constraint f

(1)
ij +f

(2)
i−1,j +f

(2)
ij = rij for i = 1, . . . , n and j = 1, . . . ,m, where we now

and in the following use the convention to simply omit terms with indices running out
of bounds. The fixed boundary conditions in our application require f

(1)
1j +f

(2)
1j = r1j

and f
(1)
nj +f

(2)
n−1,j = rnj for the first and the last row, respectively. Notice that the ma-

trix F (2) has only n − 1 rows. We sometimes assume that there is in addition a row
numbered n containing only zeros.

Since we cannot produce “negative” light we require also non-negativity of the
variables f

(")
ij ≥ 0 where we now and in the following use the superscript "= 1,2 for

statements that hold for both matrices. The goal is to find an integral decomposition
that minimizes

n∑

i=1

max
{
f

(1)
ij : 1 ≤ j ≤ m

}
+

n−1∑

i=1

max
{
f

(2)
ij : 1 ≤ j ≤ m

}

Algorithmica

This problem can be formulated as an integer linear program by replacing the objec-
tive by

∑n
i=1 u

(1)
i + ∑n−1

i=1 u
(2)
i and by adding the constraints f

(")
ij ≤ u

(")
i . This yields

min
n∑

i=1

u
(1)
i +

n−1∑

i=1

u
(2)
i

s.t. f
(1)
ij + f

(2)
i−1,j + f

(2)
ij = rij for all i, j (2)

f
(")
ij ≤ u

(")
i for all i, j,"

f
(")
ij ∈ Z≥0 for all i, j,"

The corresponding linear programming relaxation is not integral in general as an
example with

R =

1 0 1
1 1 1
0 1 1

shows. The optimal solution is obtained by setting each u
(")
i = 1

2 yielding an ob-
jective value of 5

2 . However, requiring the f -variables to be integral, yields that in
every optimal solution the u-variables are integral, too. Conversely, if we have an op-
timal integral assignment to the u-variables, then every feasible basic solution of the
f -variables is also integral. To see this property, we shall investigate the constraints
a bit deeper.

Observe that the equality constraints of (2) can be represented by a blockdiago-
nal 0/1-matrix with one block for each j = 1, . . . ,m. We thus have m blocks with
identical structure of the form illustrated on the left of expression (3)

1 1 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0

!

1 1 0 0 0 0 0 0 0
−1 0 1 1 0 0 0 0 0
0 −1 −1 0 1 1 0 0 0
0 0 0 −1 −1 0 1 1 0
0 0 0 0 0 −1 −1 0 1
0 0 0 0 0 0 0 −1 −1

(3)

Notice that the columns have the consecutive ones property. Hence, there is a nat-
ural transformation by row-operations (preserving the solution space like in Gaussian
elimination) into a node-arc incidence matrix, see, e.g. [14]. In other words, we add
a zero dummy row at the end and subtract from each row its predecessor and obtain
in each column exactly one 1 and one −1 as depicted on the right in (3). Recall that

Algorithmica

Fig. 5 Examples for a display
graph with n = 5, k = 2,3,4

this matrix is just the block for one j ∈ {1, . . . ,m}. The resulting graph G = (V ,A),
which is common to all j , is called the display graph; see Fig. 5 for an illustration.
The display graph has node set V = {1, . . . , n+ 1} and arcs (i, i + 1) for i = 1, . . . , n

and (i, i + 2) for i = 1, . . . , n − 1.
In the forthcoming, we refer to the u variables as capacities. The new right-

hand sides of the equality constraints which we call demands are given by dj (i) =
rij − ri−1,j . The generalization when we drive k ≥ 2 consecutive lines together is
straightforward and depicted in Fig. 5.

The optimization problem can now be understood as follows. Assign integral ca-
pacities u : A → Z≥0 to the arcs of the display graph at minimum cost (each unit
of capacity costs 1 for each arc) such that the network flow problem defined by
the display graph together with the demands dj : V → Z has a feasible solution for
each j = 1, . . . ,m. Let δout(X) denote the outgoing arcs of node set X ⊂ V . We use
the standard notation u(δout(X)) and d(X) for the sums over the corresponding ca-
pacities and demands respectively. It follows now from MAXFLOW/MINCUT duality
that our optimization problem can be rewritten as (cf. Chap. 11 in [15])

min
∑

a∈A

u(a)

s.t. u(δout(X)) ≥ dj (X) for all X ⊂ V , for all j (4)

u ∈ Z≥0
|A|

For general graphs, this problem contains DIRECTEDSTEINERTREE as a special case.
The complexity of the optimization problem (4) restricted to display graphs remains
open. For k = 2 and monochrome images, a polynomial-time algorithm is presented
in [7]. But regardless whether the problem is solvable in polynomial time for graphs
with our structure or it remains NP-complete, we shall focus on fast approximation
algorithms. To this end, we will discuss the separation problem for the linear program
in the next section. Among other reasons, it is necessary since the number of cuts in
a graph is exponential in its size. Moreover, fast separation permits fast heuristics in
practice.

Algorithmica

4 Efficient Algorithms for the Separation Problem

Finding violated inequalities for a given assignment to the variables is a key idea for
solving linear programs. It is well known [16] that the linear optimization problem
over a given polyhedron is polynomial time equivalent to the separation problem for
this polyhedron. Also our heuristics (see Sect. 5) rely on the solution of the separation
problem for inequalities (4) and updating the solution iteratively until we have found
a feasible solution. In our setting, the separation problem is the following:

Given a capacity assignment u ≥ 0 of the display graph, determine whether u

is feasible and if not, compute a subset X ⊂ V of the nodes in the display graph
such that there is a j ∈ {1, . . . ,m} with u(δout(X)) < dj (X).

4.1 Separation by MAXFLOW/MINCUT

Observe that we can consider the separation problem for each column j ∈ {1, . . . ,m}
independently. For a given j this can be done with a MAXFLOW computation as
follows. We construct a network Gj by adding new vertices s and t to the display
graph. The capacities of the arcs in the display graph are given by u. There is an
arc (s, i) if dj (i) > 0 with capacity dj (i) and there is an arc (i, t) if dj (i) < 0 with
capacity −dj (i).

If the maximum s, t-flow in this network is less than δj = ∑
dj (i)>0 dj (i), then the

vertices of a corresponding MINCUT which belong to the display graph comprise a
set X ⊂ V with u(δout(X)) < dj (X). If the value of a MAXFLOW in Gj is equal to
δj for all j = 1, . . . ,m, then the capacity assignment u is feasible.

In our implementation we iteratively increase the capacity of one arc by some inte-
gral constant c. We use a Blocking Flow approach in our implementation. Thereby, we
can benefit from an efficient treatment of capacity adjacent problems, see, e.g. [14].
Note that in this case there only exist at most c augmenting paths and moreover these
paths have to take the arc whose capacity has increased. Since each of these paths
can be found in linear time by depth-first search, the update takes only O(n) for one
column. In practice, the performance is even better since on average the paths are
rather short. Moreover, we have to consider only the columns that have this arc in
their current MINCUT since otherwise the additional capacity would not have any
effect.

Theorem 1 Suppose that one is given two adjacent capacity assignments 0 ≤ u ≤ ū,
i.e. u and ū differ in exactly one arc by a constant c, and a maximum flow f w.r.t. u,
then the separation problem w.r.t. ū can be solved in linear time. More precisely one
can compute a maximum flow f̄ ≤ ū and a minimum cut X̄ ⊂ V with respect to ū in
linear time.

One issue of this approach is that we maintain the flow variables f . On ordinary
PC hardware this is an advantage since we have to compute the decomposition of the
image which is represented by the flow variables at the end anyways. But we need
roughly k times more memory than the input size which makes the implementation
on a chip more expensive. We address this issue in the next section.

Algorithmica

Fig. 6 Solving the separation
problem by a shortest path
computation in a DAG (here
k = 2)

4.2 A Linear Time Algorithm for Fixed k

The number of simultaneously activated lines k is relatively small, in fact up to 6.
We now show how to solve the separation problem for fixed k in linear time. The key
feature of the display graph which allows such an efficient algorithm is the following.
The arcs are of the form (i, i′), where i′ ≤ i + k. It is sufficient to find for each
j = 1, . . . ,m a subset X ⊂ V such that u(δout(X)) − dj (X) is as small as possible.
If one of these values is negative, we have found a violated inequality. Otherwise, all
constraints are fulfilled.

In order to find such a subset X, we partition the vertices V = {1, . . . , n + 1}
into consecutive blocks B1, . . . ,B)(n+1)/k* of size k. That is, Bi := {(i − 1) · k + 1,

(i −1) ·k+2, . . . , i ·k} for i = 1, . . . , +(n+1)/k, and B)(n+1)/k* := {+(n+1)/k,k+
1, . . . , n + 1} if k does not divide n + 1.

We now consider a directed graph G = (V,A) where the vertex set V contains all
subsets of the sets Bi and there is an arc (S1, S2) if there exists an index i such that
S1 ⊆ Bi and S2 ⊆ Bi+1. Furthermore G has an additional vertex s and an additional
vertex t together with arcs (s, S) for each S ⊆ B1 and (S, t) for each S ⊆ B)(n+1)/k*.
An example is shown in Fig. 6. A path from s to t specifies a subset X ⊆ V of the
display graph in a natural way (and also vice versa): Given a path from s to t , take
the union of the subsets represented by the inner vertices of the path.

It remains to define arc weights in G such that the weight of such a path is exactly
u(δout(X))−dj (X). For this consider an arc (S1, S2) with head and tail different from
s and t respectively. The weight of this arc is defined as −∑

i∈S2
dj (i) + u(S1 : S2),

where S1 : S2 denotes the subset of arcs of the display graph that have their tails in S1
and their heads are neither in S1 nor in S2. The weight of an arc (s, S) is defined as
−∑

i∈S dj (i) and the weight of an arc (S, t) is u(δout(S)).
In this way, the weight of a path from s to t in G is equal to the value u(δout(X))−

dj (X), where X is the set which is represented by the path. Thus, the separation
problem can be reduced to m shortest path problems in graph G with roughly 2k ·
(n + 1)/k = O(n) vertices, if k is fixed. We have proved the following theorem.

Theorem 2 The separation problem for the inequalities (4) can be solved in linear
time for fixed k.

5 Implementation

In practice we have a display of fixed size and the requirement on the running time to
be below the perception of a human eye. According to this time constraint, we have to

Algorithmica

Fig. 7 Framework for the
approximation heuristics Input: d = (d1, . . . , dm)

Output: f

f = 0
u = INITIALIZE(d)

while(f is not feasible){
f = MAXFLOW(V ,A,d,u)

C = MINCUT(V ,A,d,u)

for all(a ∈ A){
u(a) = u(a) +$u(a,C)

}
}
return f

design our algorithm such that the cost of the integrated circuit which implements it is
minimized. Parallelization, e.g. on several columns concurrently, and reusing results
of certain computations, e.g. shortest path trees of previous iterations, decrease the
running time but increase the complexity and memory usage of the circuit and hence
the production costs.

Since we use only fixed precision datatypes, we consider the variables to be in-
tegral all the time. A higher intermediate precision is easily achieved by scaling the
constraints, i.e. the demands. Briefly speaking our heuristics work as follows. We
start with an initial assignment of the capacities returned by the function INITIAL-
IZE. We will discuss it later. Consider it to simply return the zero vector for now.
Afterwards, we iterate until we find a feasible solution. In each iteration, we first
solve the separation problem. Since we have to compute the lifting to the flow-
variables at the end we use the blocking flow approach for this task. Depending
on the outcome and on the chosen strategy, we augment one or several capaci-
ties. In Fig. 7, we describe this general framework of our heuristics with pseudo-
code.

In short, d denotes the demands of the nodes and thereby implicitly defines the
underlying graph as we consider k to be fixed. The notion of the function $u covers
several variants of our heuristics for augmenting the capacities.

5.1 Capacity Augmentation

After having found a violated cut, the question arises which capacity variables to
augment. Unlike in the framework of Garg and Könemann [5] where all capacities of
the cut would be multiplied with a constant, we select only one variable to augment
since we want to benefit from the capacity adjacency mentioned before.

Our strategy is to augment the most promising variable that is in any of the cuts of
the different columns. We measure the potential impact of a capacity by the number
of different columns, i.e. cuts, it appears in. This would be equivalent to summing
up all the cuts over all columns which gives us a valid violated inequality too. The
basic greedy approach selects the capacity having the highest potential impact, i.e. to
increase the capacity with the highest coefficient in the sum of the cuts. A slightly

Algorithmica

different variant of this approach takes only the variables into account which appear
in the cut of a column with the maximum deficit (referred to as max-column greedy
update), i.e. that attains the minimum in the separation problem.

Since we maintain the integrality of the variables throughout the algorithm, we
have to increase the variables at least by 1 in each iteration. With this value, the run-
ning time is then proportional to the size of the display and the difference between
the achieved objective value and the one from the initial solution. By adding a greater
constant or a certain fraction of the previous capacity like in the framework of Garg
and Könemann, the running time would improve, however we observed that the qual-
ity of our approximation deteriorated.

5.2 Initialization

The naive way to initialize the capacities is to set them to the zero vector. The other
extremal case would be to solve the LP and round up each fractional capacity with
the result that we have just one iteration where we compute the flow variables. Al-
though we are within an additive error not greater than the number of variables then,
we could round down instead of rounding up and solve or approximate the remaining
0/1 integer program with a possibly better solution for the whole problem. However,
as mentioned before solving (or approximating) linear programs involving fractional
numbers is not really what we want. It is natural to ask whether there is a way in
between that allows us to stick with integers and can be attacked with a fully combi-
natorial algorithm.

Indeed, if we restrict ourselves to easy constraints, i.e. constraints describing an
integral polyhedron, we accomplish the first goal of remaining integral. If we only
consider constraints permitting fully combinatorial algorithms (e.g. flow problems or
their duals) then we could also achieve the second goal.

Having solved such an easy subproblem, we can initialize our heuristics with the
thereby computed solution. The next theorem identifies such an easy subset of the
constraints.

Theorem 3 The linear program (4) restricted to the set system

C =
n⋃

i=1

{Xi,Yi,Xi ∩ Yi,Xi ∪ Yi : Xi = {1, . . . , i}, Yi = {i, i + 2, i + 3, . . . , n + 1}}

has an integral optimal solution for k = 2 which can be found in O(n) time by a fully
combinatorial algorithm.

Proof We order the variables u
(")
i lexicographically with respect to [i, l]. The con-

straints corresponding to the cuts of C are

u(δout(Xi)) = u
(2)
i−1 + u

(1)
i + u

(2)
i

u(δout(Xi ∪ Yi)) = u
(2)
i−1 + u

(1)
i

u(δout(Xi ∩ Yi)) = u
(1)
i + u

(2)
i

u(δout(Yi)) = u
(1)
i

Algorithmica

Hence, the constraint matrix has the consecutive ones property in every row. Since
our objective is the all-ones vector, we can solve the problem by a shortest path com-
putation in a directed acyclic graph of O(n) nodes and |C| = O(n) edges. The trans-
formation is performed similar to the one illustrated in (3). We add a dummy variable
at the end and apply a unimodular transformation to the variables (like we did it with
the rows in Sect. 3), we get ≥ constraints containing exactly one 1 and one −1 in
each row. The costs of the edges are given by the negated right-hand side of the re-
spective constraints. The costs of the shortest path from the first to the last node yield
the negated optimal objective value subject to the subsystem C . The corresponding
capacities can be computed from the difference of the distance labels of the nodes by
reversing the transformation. All these operations take O(n) time in total. "

Note that this consecutive ones property does not hold for k > 2. However, we can
restore it by adding the missing capacities on the left-hand-side of the inequalities
and the corresponding lower bounds, i.e.

u
(1)
i ≥ dj (Yi), u

(2)
i ≥ 0, (5)

on the right-hand-side giving (weaker) valid inequalities yielding an approximate
solution.

The objective value of a capacity assignment satisfying the easy constraints is a
lower bound on the optimum value with respect to all constraints. However, some
of the capacities of an optimum solution for all constraints may be lower than those
optimizing only the easy constraints. Since our heuristics only increase variables, we
may overshoot the mark for certain capacities. To be on the safe side, one could use
only the constraints (5), to which we refer as safe lower bounds in the experimental
evaluation of our approach in the next section.

6 Computational Results

As of yet the computational results are based on ordinary PC hardware. Therefore,
we only present the running times of the variant that performs best on a Pentium M
with 2 GHz and 2 MB L2 cache.

As a test set we used the portraits of 197 employees of the MPI. While the original
images have a resolution of 180×240 RGB pixels (i.e. 720 diodes per row), we scaled
them down to n = 60, 90, 120, 150 keeping the aspect ratio such that we have m = 4n
for all images. We observed that, among the different initialization and augmentation
strategies, a combination of the aforementioned max-column greedy update and the
initialization using the easy constraints performs best. We recommend these strategies
on the basis of an implementation on PC-hardware.

On the left of Fig. 8, one can see the dependence of the running time on the input
size together with the distribution of the instances. We connected the median running
time to guide the eye. The fit of these medians with respect to a power function yields
t = 21 µs ·n2.23 which is almost linear in the number of pixels. The graph on the right
of Fig. 8 has on its x-axis the initial intensity I and on the y-axis the reduced intensity
I ′ which we achieve with multiline addressing using our algorithm. The black dots

Algorithmica

Fig. 8 We initialized the capacities by the easy constraints (ec), used a blocking flow algorithm (bf),
performed the capacity augmentation by the maximum column greedy update method (mcgu), and k = 2,
4, 6. The left plot shows the dependence of the running time on n in case of k = 2. On the right, each mark
represents an instance with its original value on the x-axis and the objective on the y-axis. The inset shows
the average ratios and their standard deviations for k = 2, 4, 6 respectively

Fig. 9 Using safe lower bounds for initialization yields better ratios (right) but worse running times (left)

are the results obtained by addressing two rows simultaneously, i.e. for k = 2. Here
one can see that the average ratio I ′/I is roughly 0.545 with a standard deviation
of 0.034. The green squares are the results for k = 4. Here the average ratio I ′/I
is 0.385 ± 0.065. The red triangles represent k = 6 with I ′/I = 0.372 ± 0.100. The
theoretical lower bound for these ratios is 1/k.

Not using the easy constraints but safe lower bounds yields slightly better ratios
as depicted in the inset of the right graph of Fig. 9. But the running time grows faster
with the number of pixels as one can see in the left graph of Fig. 9 where the three
top curves belong to the median runtimes using safe lower bounds with k = 2,4,6
respectively, whereas the median runtimes using the easy constraint initialization and
k = 2,4,6 yield the three lower curves.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

Algorithmica

References

1. Xu, C., Wahl, J., Eisenbrand, F., Karrenbauer, A., Soh, K.M., Hitzelberger, C.: Method for triggering
matrix displays. German Patent Application 10 2005 063 159 PCT/EP2006/012362 (filed 12/30/2005,
pending)

2. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization.
Algorithms and Combinatorics, vol. 2. Springer, Berlin (1988)

3. Khachiyan, L.: A polynomial algorithm in linear programming. Dokl. Akad. Nauk SSSR 244, 1093–
1097 (1979)

4. Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a large-scale traveling-salesman problem. J. Oper.
Res. Soc. Am. 2, 393–410 (1954)

5. Garg, N., Könemann, J.: Faster and simpler algorithms for multicommodity flow and other fractional
packing problems, FOCS pp. 300–309 (1998)

6. Xu, C., Karrenbauer, A., Soh, K.M., Wahl, J.: A new addressing scheme for PM OLED display.
In: Morreale, J. (ed.) SID 2007 International Symposium Digest of Technical Papers. Society for
Information Display, vol. XXXVIII, pp. 97–100. Long Beach, USA (2007)

7. Eisenbrand, F., Karrenbauer, A., Xu, C.: Algorithms for longer OLED lifetime. In: Demetrescu, C.
(ed.) WEA 2007. Lecture Notes in Computer Science, vol. 4525, pp. 338–351. Springer, Berlin (2007)

8. Paatero, P., Tapper, U.: Positive matrix factorization: A non-negative factor model with optimal uti-
lization of error estimates of data values. Environmetrics 5, 111–126 (1994)

9. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization, Adv. Neural Inf. Process.
Syst. 13 (2001)

10. Smith, E., Routley, P., Foden, C.: Processing digital data using non-negative matrix factorization.
Patent GB 2421604A, pending (2005)

11. Smith, E.C.: Total matrix addressing (TMA™). In: Morreale, J. (ed.) SID 2007 International Sympo-
sium Digest of Technical Papers. Society for Information Display, vol. XXXVIII, pp. 93–96. Long
Beach, USA (2007)

12. Ehrgott, M., Hamacher, H.W., Nußbaum, M.: Decomposition of matrices and static multileaf collima-
tors: a survey, vol. 12, pp. 25–46 (2007)

13. Murano, S., Burghart, M., Birnstock, J., Wellmann, P., Vehse, M., Werner, A., Canzler, T., Stübinger,
T., He, G., Pfeiffer, M., Boerner, H.: Highly efficient white OLEDs for lighting applications. SPIE,
San Diego (2005)

14. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Pren-
tice Hall, Englewood Cliffs (1993)

15. Schrijver, A.: Combinatorial Optimization—Polyhedra and Efficiency. Algorithms and Combina-
torics, vol. 24. Springer, Berlin (2003)

16. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial
optimization. Combinatorica 1(2), 169–197 (1981)

	Multiline Addressing by Network Flow
	Abstract
	Introduction
	Contributions of this Paper
	Related Work

	Technical Background
	The Network Model
	Efficient Algorithms for the Separation Problem
	Separation by MaxFlow/MinCut
	A Linear Time Algorithm for Fixed k

	Implementation
	Capacity Augmentation
	Initialization

	Computational Results
	Open Access
	References

