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Exercise 4

General Instructions This exercise uses the CVX1 optimization package.
You can run matlab with correct CVX paths by using the command cvx at the
command line on student lab machines. The command cvx where at matlab
prompt provides the full path to the CVX installation.

Part I — Max-margin classifier
This exercise compares a linear programming based classifier with a max-

margin classifier. Let D = {(xi, yi)}Ni=1 denote training data where xi ∈ <d are
points in d−dimensional space and yi ∈ {−1,+1} are the corresponding labels.
A linear classifier can be written as ŷ = f(x) = sign(w>x − b), where w ∈ <d
and b ∈ < are the two unknown parameters. The unknown parameters w, b are
learnt from the training data. Then, a new test point x1 can be classified by
computing ŷ1 = sign(w>x1 − b).

One possible approach for learning the unknown parameters w, b from the
training data is using the linear programming formulation given below:

minw,b,δ δ
s.t. yi(w

>xi − b) ≥ 1− δ ∀ 1 ≤ i ≤ N
δ ≥ 0

(1)

A more robust approach is using the maximum margin classifier. The following
optimization problem describes a soft margin classifier

minw,b,ξ
1
2 ||w||

2
2 + C

∑N
i=1 ξi

s.t. yi(w
>xi − b) ≥ 1− ξi ∀1 ≤ i ≤ N [αi]

ξi ≥ 0 ∀1 ≤ i ≤ N [ρi]

(2)

where C is a user-controlled parameter. The dual formulation to (2) is given
by:

maxα
∑N
i=1 αi −

1
2

∑N
i=1

∑N
j=1 αiαjyiyjx

>
i xj

s.t.
∑N
i=1 αiyi = 0

0 ≤ αi ≤ C ∀ 1 ≤ i ≤ N
(3)

1http://cvxr.com/cvx/
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The optimal w∗ has the form w∗ =
∑N
i=1 α

∗
i yixi.

Questions

1. Implement the linear and max-margin classifiers in (1) and (2) using CVX
and run it on the dataset http://www.cse.chalmers.se/edu/year/2011/

course/TDA206_Discrete_Optimization/hw4/exercise1.mat containing a ma-
trix training data and vector training label using C = 1.

2. On the same plot, show the following:
a) The points belonging to the two classes using different colors.
b) The line w>x− b = 0 corresponding to the classifier in (1).
c) The line w>x− b = 0 and lines w> − b = ±1 (dashed) in (2).
d) Highlight the points having dual variable α∗i 6= 0 in (2).

3. Experiment with the soft-margin setting as folllows:
a) Remove the terms ξi in (2). (“hard” margin)
b) Explore different values of C ∈ (0,∞).

Part II — Weighted Max-Cut
This exercise explores semi-definite relaxation of the weighted max-cut problem.
Given a graph G = (V,E) with vertices V = 1, . . . , n and non-negative weights
wIj for each edge (i, j) ∈ E, the weighted maximum cut Y : V → {−1, 1} is
given by:

maxY
1
2

∑
(i,j)∈E wij(1− yi ∗ yj)

s.t. y2i = 1 (OR yi ∈ {−1,+1}) ∀i ∈ V (4)

This is a Quadratic Integer Program (QIP) which is known to be NP-Complete.
Multiple algorithms have been developed which provide an approximate solution
to the above problem.

1. Random approximation A 1
2 -factor approximation algorithm which inde-

pendently assigns each vertex vi to S or S̄ with equal probability i.e.

P (yi = +1) = P (yi = −1) =
1

2
,∀1 ≤ i ≤ N (5)

2. Greedy approximation A 1
2 -factor approximation algorithm is based on

iterating through the vertices and greedily assigning vertex i into set S
or S̄ based on which placement maximizes the weight of the cut w.r.t.
already assigned vertices {1, . . . , i− 1}.

3. SDP relaxationThe SDP relaxation works by changing the labels yi to vec-
tors ~yi ∈ <n subject to the constraint ||~yi||2 = 1. This can be formulated
as an semidefinite program2 given as:

minX
∑
i,j wijxij (= Tr(WX))

s.t. diag(X) = 1
X < 0

(6)

2See course website for more information
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Then, X is positive semi-definite and can be factorized as X = V V > using
Cholesky factorization. The overall algorithm is given as follows:

Algorithm 1 Goemans & Williamson algorithm

Input: W {weight matrix}
Find X∗ as in (6) {S.D.P. Formulation}
Find V = chol(X∗) {Cholesky Factorization}
Choose ~r ∈ Bn {Random direction in unit ball}
return S = sign(V ∗ r) {Assignment using randomized rounding}

Sometimes, the Cholesky Factorization fails due to numerical errors. Then,
use X instead of V in later steps.

Questions The following questions use the dataset at http://www.cse.chalmers.
se/edu/year/2011/course/TDA206_Discrete_Optimization/hw4/graphs.tgz. This
dataset has a small manually annotated graph in the file small W.txt and a
number of moderate graphs in the path ${PWD}/mac/rudy/. The format of
the files is:

nV nE

x1 y1 w1

x2 y2 w2

...

where nV and nE on the first line denote the number of vertices and edges in
the graph. Each subsequent line gives the weight corresponding to an edge.3

1. Implement the three algorithms discussed and compare their results on
the given datasets. An template for the code is provided at http://www.

cse.chalmers.se/edu/year/2011/course/TDA206_Discrete_Optimization/hw4/

template.m.

2. We note that V is a collection of vectors that we are trying to cluster into
two classes. Randomized rounding procedure is one way to do it (with
theoretical guarantees). This question investigates what happens in case
we use an alternate scheme. Use the rows of the V matrix obtained in
1 for hierarchical clustering4 into two clusters. The assignment obtained
gives the max-cut using this scheme. How does the assignment compare
for (a) small W.txt (small graph) (b) p01 100.7 (moderate graph).

3For more details, see http://biqmac.uni-klu.ac.at/biqmaclib.html
4See matlab functions linkage, cluster, dendrogram
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