
Discrete Optimization Take Home Exam 1

March 08 Take Home, Due March 09, 10 AM

Ansvarig:
Devdatt Dubhashi Tel. 772 1046 Rum 6479 EDIT

Max points: 60
Grade criteria: Chalmers 5:48, 4:36, 3:24

GU VG:48, G:24
Doktorander G:36

Helping material: Course book, material on course page.

• You are required to work alone.

• Recommended: First look through all questions and make sure that you under-
stand them properly. In case of doubt, do not hesitate to ask.

• Answer concisely and to the point. (English if you can and Swedish if you must!)

• Code strictly forbidden! Motivated pseudocode or plain but clear English/Swedish
description is fine.

Lycka till!

12010 LP3, TDA206/DIT370.

1

Problem 1 Helping Malmö Aviation [10] Malmö Aviation flies between Stock-
holm (yuppie city), Göteborg (your friendly city) and Malmö (Zlatan city). For this
problem, focus on the Friday afternoon flight that departs from Stockholm, stops in
Göteborg and continues to Malmö. There are three types of passengers:

(a) Those going from Stockholm to Göteborg (S–G).

(b) Those going from Göteborg to Malmö (G–M).

(c) Those going from Stockholm to Malmö (S–M).

The aircraft has a maximum capacity of 80 passengers. Malmö Aviation offers three
fare classes:

(a) Super–flex (fully refundable).

(b) Flex (can change booking subject to availabilty).

(c) Economy (no rebooking, 3 week advance purchase).

Ticket prices (largely determined by external influences like competitors) have been set
and are advertised as follows:

S–G G–M S–M
SuperFlex 400 350 530
Flex 600 450 870
Economy 800 650 980

Based on past experience, demand forecasters at Malmö Aviation have determined the
following upper bounds on the number of potential customers in each of the 9 possible
origin–destination/fare–class combinations:

S–G G–M S–M
SuperFlex 15 12 10
Flex 35 23 18
Economy 45 38 43

The goal is to decide how many tickets from each of the 9 origin–destination/fare–class
combinations to sell. The constraints are that the plane cannot be overbooked on either
of the two legs of the flight and the number of tickets made available cannot exceed the
forecasted maximum demand. The objective is to maximize the revenue. Formulate
the problem as a ILP.

Problem 2 Vertex Cover [10] Show that the weighted vertex cover problem can
be solved in polynomial time for bipartite graphs using LP. Give a full justification.

Problem 3 Vertex Cover again [10] Show that in any basic feasible solution (BFS)
of the LP relaxation (equation (3.3) in MG) of the ILP for the vertex cover problem in
a general graph (not necessarily bipartite) xv ∈ {0, 1/2, 1} for all v ∈ V . Hence deduce

2

another 2–approximation algorithm for the weighted vertex cover problem in general
graphs. (Hint: recall that x is a BFS iff it cannot be written as λy + (1 − λ)z for
λ ≥ 0 and any y 6= x 6= z.)

Problem 4 Set Cover [10] The Set Cover problem is an abstraction that oc-
curs repeatedly in problems faced by Jeppesen in airline scheduling. Given a uni-
versal set U := {1, · · · , n} and subsets S1, S2, · · · , Sm ⊆ U with non–negative weights
w1, w2, · · · , wm, the problem is to find a sub-collection Si1 , Si2 , · · · , Sik such that the
sub-collection covers U i.e.

⋃
i`
Sij = U and the total cost

∑
i`
wi` is minimized.

(a) Show that the weighted vertex cover problem is a special case of the set cover
problem.

(b) Formulate the Set Cover problem as an ILP. Give a brief justification. Describe
the constraint matrix: what are its dimensions and what is the (i, j) entry?

(c) Pass to the LP relaxation, and suggest a rule to round the optimal LP solution
to a solution to the ILP.

(d) Give an analysis for an approximation that your rule guarantees.

(e) What is the integrality gap of your (ILP) -(LP) pair and what does it imply for
approximation algorithms?

Problem 5 How to Solve LP Without GLPK [10] Without using GLPK or any
LP solver, find the optimum value and the optimum solution (x∗1, · · · , x∗5) for

min 2x1 + 3x2 + 5x3 + 2x4 + 3x5

subject to

x1 + x2 + 2x3 + x4 + 3x5 ≥ 4
2x1 − 2x2 + 3x3 + x4 + x5 ≥ 3

x1, x2, x3, x4, x5 ≥ 0

Hint: Write the dual, solve it graphically and use the complementary slackness condi-
tions.

Problem 6 Implementing Vertex Cover [10] Consider the primal–dual algorithm
for vertex cover from class and discussed at the end of section 1 in David Williamson’s
survey available on the course webpage. (The algorithm he discusses is slightly different
though.) This problem develops a version that would actually be implemented.
Recall the continuous time description: at time 0, no vertex is included in the cover
and all dual variables have value y0

i,j = 0 and all edges are active. At any time t ≥ 0,
the dual variables corresponding to the active edges are raised simultaneously at unit
rate (i.e. in 5 sec, they increase in value by 5 for example). This continues until a time
t′ ≥ t when a vertex i becomes tight i.e. the corresponding dual constraint is satisfied
with equality:

∑
(i,j)∈E y

t′
i,j = wi. At this time, vertex i enters the cover, and all active

edges (i, j) incident on i are now made inactive and their dual variables are frozen to
the values yt′

i,j (which remain the same at later times). This continues until we have a
vertex cover i.e. all edges are inactive.

3

(a) What is the value of the dual variable yt
i,j for an edge (i, j) active at time t?

(b) What is the time t+δt upto which the dual variables of active edges can be raised
starting at time t i.e what is the value δt such that at time t+ δt the next vertex
become tight? Your answer should involve the surplus capacity of a vertex i at
time t given by wt

i := wi −
∑

(i,j)∈E y
t
i,j , and its active degree ∆t

i which is the
number of active edges incident on i at time t.

(c) Based on (a) and (b), write down a discrete version of the algorithm, where in
the loop, you specify what is the next vertex to pick in the cover and the value
at which the active dual variables corresponding to this vertex are frozen and
become inactive. Specify also other necessary updates. Your algorithm must run
in time O(|V |2).

(d) Can you implement the algorithm to run in time O(|E|+ |V | log |V |)? You must
give a complete justification of the running time. (Hint: Check out the Fibonacci
Heap data structure.)

4

