
The I/O system

The main purpose of the I/O-system is to hide details of
specific hardware units from other parts of the kernel.

The I/O-system consists of:

• Buffer cache system

• General driver code

• Drivers for specific hardware devices

Three main types of I/O in FreeBSD (fig. 6.1)

• filesystem

• character devices

• sockets

In most Unix systems disks are accessible both as character
device and block device special files.

The block devices were removed from FreeBSD5.2.

1

I/O buffers

The file system use a buffer cache to reduce the number of
data transports between main memory and a device.

• Each buffer is described by a buf struct

• A buf struct is used both to locate a data block in the
cache and to describe a data transport between the main
memory and the disk

• Each buf struct points to a data area in kernel virtual
address space (In FreeBSD 5.2 this data area is a page
frame)

The character interface is used by terminals, but also for
reading and writing to disk memory without using the buffer
cache (raw I/O)

• Raw I/O is used by system utilities like fsck and for paging
operations to the swap area

• Raw I/O also use a buf struct to describe the data
transport, but in this case it is not connected to the buffer
cache and is called a swap buffer

• Raw I/O requires read/write operations to use complete
disk blocks

2

Device Drivers

A device driver is divided into three main sections:

• Autoconfiguration and initialization routines

• Routines for servicing I/O requests (top half)

• Interrupt service routines (bottom half)

3

I/O Queuing

• Device drivers manage a queue of I/O requests that have
not yet completed.

• When an input or output request is received by the top half
it is recorded in a data structure (typically a buf struct) that
is added to the I/O queue.

• When an I/O operation completes, the interrupt service
routine removes the request from the queue and wakes
top half.

• To prevent the I/O queue from being simultaneously
modified from the top half and the bottom half, it has to be
locked by a mutex when it is updated.

4

Interrupt Handling

• On receiving a device interrupt, the hardware calls an
interrupt handler on an address determined by the
interrupt vector table.

• In reality the same interrupt handler is used for all interrupt
vectors.

• This common interrupt handler can identify the
interrupting device with help of information pushed on the
kernel stack by interrupt handling hardware.

The common interrupt handler takes the following actions:

1. Collects the relevant hardware parameters

2. Update statistics on device interrupts

3. Schedule the interrupt service thread for the device

4. Clears the interrupt-pending flag in the hardware

5. Returns from interrupt

5

Entry Points for Character Devices

Device drivers for character devices have entry points as
shown in table 6.1

6

Entry Points for Disk Device Drivers

In FreeBSD 5.2, disk device drivers are called via the GEOM
layer.

In FreeBSD 5.2 device drivers for disk devices contain all the
character device entry points but in addition it has a strategy
entry point.

open: Called for each open system call on the device
special file or internally from the mount system call.

strategy: A common entry point for read and write
operations. Each call to the strategy routine specifies a
pointer to a buf struct containing the parameters for an I/O
request. The strategy routine is usually called from the
block I/O subroutines bread() and bwrite().

Close: Called after the final client interested in using the
device terminates. Disk devices have nothing to do at
close. For magnetic tape, an endmark is usually written to
the tape.

7

Sorting of Disk I/O Requests

• The kernel provides a general disksort() routine that can
be used by all the disk device drivers.

• The routine sorts the device driver queue using a SCAN
algorithm.

• With the BSD filesystem disk sorting is important only
when there are multiple simultaneous users of a disk.

8

Disk Labels

• A disk may be broken up into several partitions, each of
which may be used for a separate partition or swap area.

• In order to be able to locate a disk block, the device driver
must know the partition layout.

In older Unix systems, the partition table was stored in the
device driver. This had some disadvantages:

1. If the partition layout for a disk was changed, the driver
had to be recompiled.

2. All disks of the same type needed to have the same
partition layout.

3. Unless a standardized partition layout was used, a new
version of the kernel had to me modified to be able to use
existing disks.

9

Disk Labels and Partitions

• Today the partition table, sometimes called a disk label, is
stored on the disk.

• Information about the disk partition table need to be stored
in block 0 on the disk, as this is the only block that can be
located without knowing anything about the disk layout.

• Block 0 also stores a simple boot loader.

• For PC machines information about four partitions is
stored in MBR (Master Boot Record) in block 0.

For each of the partitions the following information is stored:

• If it is a primary or extended partition.

• The partition type.

• Address to the first block in the partition.

• The partition size.

• One of the partitions is marked as boot partition.

The first block in each partition is a boot block for that
partition.

10

Descriptor Management

• For user processes, all I/O is done through descriptors.

• System calls that refer to open files take a file descriptor
as an argument to specify the file.

• The file descriptor is used by the kernel to index into the
the descriptor table (part of process structure) for the
current process.

• Each entry in the descriptor table point to a file structure
that points to a vnode or a socket (fig. 6.4).

11

File structure (file entry)

• The original use of file struct was to hold the read/write
offset for open files.

• Today file struct also contains a type and an array of
function pointers that translate the generic operations on
file descriptors to the specific routines for their type.

• The following operations exist:

→ fo read
→ fo write
→ fo ioctl
→ fo poll
→ fo close

The descriptor type may be VNODE or SOCKET.

12

Multiplexed I/O

• A process sometimes want to handle I/O on more than
one descriptor.

• In this case blocking read operations cannot be used.

• The traditional Unix method to solve this problem have
been to use concurrent processes.

• A drawback is that process switching is slow.

FreeBSD provides three methods that permit multiplexing I/O
on descriptors:

• Nonblocking I/O

• Signal-driven I/O

• Polled I/O using select or poll

13

Multiplexed I/O, cont.

Four alternatives that avoid the blocking problem:

1. Set all the descriptors into nonblocking mode.

• The problem with this is that the process must run
continuously (Busy wait !).

2. Enable all involved descriptors to send a signal when I/O
can be done.

• A signal handler is called when I/O can be done.
• A drawback is that signals are expensive to catch.

3. Have the system provide a system call that can check
which descriptors are capable of doing I/O.

• A drawback is that the process has to do two system
calls for each I/O operation.

• Implemented in FreeBSD via select.

4. Use threads.

• Potential problems are lack of good standards for
programming with threads and also the memory
demand may be to big if a large number of threads are
needed.

• Implemented in FreeBSD 5.2.

14

Movement of Data Inside the Kernel

• When writing to block devices, data must first be copied to
a kernel buffer before it can be sent to the driver.

• The kernel buffer can be written from several user buffers
in one operation (scatter/gather I/O).

• Useful for example to add a header to a network packet.

• Data movements between the kernel and a process is
described by a uio structure.

• Base address and length for a user mode buffer is given
by an iovec.

• An uio structure contains (fig. 6.6):

→ Pointer to an array of iovec structures
→ The number of elements in the iovec array
→ Offset in the file
→ READ/WRITE flag

15

Movement of Data Inside the Kernel cont.

Copying of data is done by the routine:

uiomove(kaddr, nbytes, uio);

kaddr specifies the address to a kernel buffer (described by a
buf struct).

Raw I/O

• Raw I/O do not use the buffer cache, instead data are
transferred directly to/from a user buffer.

• The kernel still have to allocate a buf struct (swap buffer)
to describe the data transport.

• Driver code also requires the user data buffer to be
mapped into the kernel virtual address space.

• Read and write operations from a raw device special file
calls the physio() routine to perform the I/O operation.

16

FreeBSD Buf struct

struct buf {

b bcount; /* Valid bytes in buffer. */

b data; /* Memory adress for data transport */

b dev /* Device to do I/O on */

b iocmd /* I/O operation */

b ioflags; /* flags for I/O operation. */

b iooffset /* offset into file */

b resid; /* Remaining I/O in bytes */

b blkno; /* Underlying physical block number. */

b left; / incore hash chains */

b right; / implemented with splay trees */

b vnbufs; /* Buffer’s associated vnode. */

b freelist; /* Free list position if not active. */

bio queue; / Device driver queue when active */

b flags /* Buffer status flags */

b bufsize; /* Allocated buffer size. */

b kvabase; /* kernel virtual adress (kva) for buffer */

b kvasize /* size of kva for buffer */

b saveaddr; /* Original b addr for physio. */

b lblkno; /* Logical block number. */

b vp; / Device vnode. */

(*b iodone) /* Function to call upon completion. */

...

};

17

Flags for buf struct

b flags in buf struct use the following flags (among others):

B CACHE Indicates that the buffer is entirely valid.

B MALLOC Request that the buffer be allocated from the
malloc pool.

B VMIO Indicates that the buffer is tied into an VM object.

18

Physio()

Simplified FreeBSD physio()

physio(strategy, bp, dev, flags, uio)

int strategy();

struct buf *bp;

dev t dev;

int flags;

struct uio *uio;

{

bp = getpbuf(); /* allocate swap buffer */

while (uio is not exhausted) {

/* set up the buffer */

bp->b flags = 0;

bp->b bcount = iovp->iov len;

bp->b data = iovp->iov base;

lock the part of the user address space

involved in the transfer;

vmapbuf(bp, bp->b count); /* map into kernel VM */

(*strategy)(bp); /* start transfer */

wait for transfer to complete;

unlock user address space;

vunmapbuf(bp, bp->b count); /* unmap from kernel*/

iolen = bp->b bcount - bp->b resid; /* transfered no of bytes

iovp->iov len -= iolen; /* update uio */

iovp->iov base += iolen;

}

free swap buffer;

}

19

The Virtual filesystem interface

• In BSD4.3 and earlier, the file struct directly referenced
the inode.

• With the advent of multiple filesystem types, this did not
work anymore.

• The solution was to add a new object-oriented data
structure between file struct (file entry) and the inode.

• This was first implemented by Sun, who called the new
data structure a vnode (virtual node).

20

Vnode

The vnode contains among other things the following
information:

• Flags that may specify for example that that the vnode
represents an object that is the root of a file system.

• Reference counts for the number of “users” of the vnode.

• A pointer to the mount structure that describes the
filesystem that contains the object represented by the
vnode.

• A pointer to the set of vnode operations defined for the
object.

• A pointer to the inode or nfsnode (private information for
the object represented by the vnode).

• The type of the underlying object (for example directory or
file). This is only an optimization.

• Lists with clean and dirty buffers. The dirty list is used by
fsync to quickly locate buffers that need to be written back
to the disk. The clean and dirty lists are used when a file
is deleted to free all the buffers used by the file.

• The mount struct points to a list of vnodes for all open files
in the filesystem. Can be used by sync.

21

Vnode Operations

• Which operations that are called via a vnode can be
dynamically changed.

• At system boot, every filesystem registers which
vnode-operations it supports.

• For every filesystem, an operation vector is built:

→ For supported operations, it is filled in with the address
to the routine implementing the operation.

→ For not supported operations, a routine which calls a
lower level in the vnode-stack may be used or an error
routine may be called.

The filesystem code was split in to parts in 4.4BSD:

1. Routines that implement the naming in the filesystem tree.

2. Routines that implement the physical storage of data in a
flat name space (block numbers).

22

Mount Parameters

• Some properties of a filesystem can be specified in the
mount command and are stored as flags in the mount
struct.

• Some things that can be specified:

Noexec Files on this filesystem may not be executed.

Nosuid Set-user-id programs can not be executed on this
filesystem. Useful if free mounting of unknown disks is
allowed.

Nodev Do not allow special files on this filesystem.

23

Pathname Translation

At open, a filename given as a path name shall be translated
to a pointer to a vnode.

The pathname translation proceeds as follows:

1. The pathname to be translated is copied from the user
process to the kernel.

2. The starting point is determined: root or current directory.
The vnode of the appropriate directory becomes the
lookup directory used in the next step.

3. The vnodes lookup() routine is called with one name
component as parameter. The underlying filesystem looks
up the component in the lookup directory and returns its
vnode:

• If the last component: ready
• If not the last component and not a directory: error!
• If not the last component and a directory:

→ If mount point: lookup directory is set to the mounted
filesystem.

→ Otherwise: lookup directory becomes the returned
vnode.

24

Filesystem-Independent vnode-services

• The vnode interface also provides a set of management
routines that can be used by the client filesystem or other
parts of the kernel.

• FreeBSD has a global pool of vnodes that are shared
among all the filesystems.

getnewvnode(): Allocate a new vnode. Take from the vnode
free-list in LRU order.

inactive(): Called when the vnode usage count drops to
zero, due to the close of the last reference to the file.
Modified blocks are written back to disk but the blocks are
usually left in the buffer cache. The vnode is added to the
vnode free-list.

reclaim(): Called by getnewvnode() to completely free the
vnode from its previous usage. Removes associated
cached data blocks from their hash lists.

25

The Name Cache

To optimize the translation of pathname to vnode, a name
cache is used.

Operations:

• Add a name to the cache

• Look up name,directory-vnode - return a pointer to a
vnode

• Remove a name from the cache

Certain content in this cache becomes invalid when a vnode
is reclaimed.

• Each vnode has a list of its entries in the cache.

• Each directory vnode has a second list of all the cache
entries for names that are contained within it.

• When a directory vnode is to be purged, all name-cache
entries on this second list must be removed.

• A vnode’s name-cache entries must be purged each time
the vnode is reused by getnewvnode() or if the name is
changed for a directory.

26

The Name Cache - cont.

• The cache management routines also allows for negative
caching.

• If a name is looked up in a directory and not found, it can
be entered in the cache.

• If the name is later looked up, the cache will inform that
the name is NOT in the directory.

• Improves path searching in command shells.

27

Block I/O interface

The block I/O routines in FreeBSD address logical block
numbers in a file.

Bread() Read the specified logical block and return a locked
buffer for it.

Breadn() As bread, but also start read-ahead of additional
blocks.

A buffer can be released (written to disk) with:

brelse() Return the buffer to the free list an wake up any
processes waiting for it. The buffer may not be modified.

bdwrite() Mark the buffer dirty and return it to the free list
without initiating I/O and also wake up any waiting
processes. The buffer is written by sync within 30
seconds.

bawrite() Initiates asynchronous write on the buffer.

bwrite() Starts I/O on the buffer and waits for the data to be
written to the disk.

28

Buffer pool

• A buffer with valid content is on exactly one bufhash list
(fig. 6.8).

• The lists are hashed on <vnode, logical block-number>

• A buffer is removed from the hash list only when the
content becomes invalid or it is reused for other data.

• In FreeBSD the hash lists are implemented as splay trees.

Besides on a hash list the buffer also is on exactly one free
list:

Locked: Buffers on this list are locked in the cache. Used in
FreeBSD for blocks being written in the background.

Dirty: Buffers that contain modified data not written to the
disk. When too many buffers are dirty the buffer daemon
is started.

Clean: Buffers with content that is known but not modified,
or rewritten to disk.

Empty: The empty buffers are just headers that have no
memory associated with them.

When a new buffer is needed it is taken from the empty list,
unless the maximum number of buffers is already allocated.
In this case new buffers are taken from the clean list.

29

Bio Routines

bread - block read

in data: struct vnode * vp, daddr t blkno, int size,

Out data: struct buf * bp – Pointer to a locked buffer

bread(...)

{

bp = getblk(vp, blkno, size) /* get buffer */

if (buffer data not valid) {

VOP STRATEGY(vp, bp); /* fill buffer */

}

return;

}

30

Bio Routines, cont.

getblk - returns a pointer to a locked buffer

struct buf *

getblk(vp, blkno, size)

{

if (buffer in hash list)

return buffer;

else {

bp = getnewbuf(size); /* get buffer header and kva*/

insert buffer into hash list;

allocbuf(bp, size); /* allocate physical memory */

}

}

Allocbuf reserves physical memory for a buffer. For blocks in
files, page frames from the virtual memory are used.

31

Allocbuf()

Allocbuf() allocates physical memory for a buffer. Virtual
kernel addresses for the buffer has been allocated by
getnewbuf().

• For logical blocks in a file, page frames from the virtual
memory system are used as buffer memory.

• Allocbuf() also calls pmap qenter() to map the buffer into
kernel virtual memory.

Filesystem meta data like inodes and bitmaps do not exist in
the virtual memory.

• In this case, allocbuf() calls malloc to allocate memory for
the buffer

• If a buffer already have too much memory, allocbuf() can
free unneeded memory.

32

Stackable filesystems

• It can be desirable to be able to provide new filesystem
features without modifying the existing stable code.

• One approach is to provide a mechanism for stacking
several filesystems on top of each other.

• To make this possible the vnodes need to be stackable.

• The stackable vnodes in FreeBSD is taken from 4.4BSD
with minor modifications.

• The bottom of a vnode stack tends to be a disk-based
filesystem.

• The layers above typically transform their arguments and
pass on to a lower layer.

• To connect a new vnode-layer in the file system, the
mount command is used.

33

Stackable filesystems, cont.

• Commands are called via the operations vector in a
specific vnode.

• Thus, every level in the vnode stack have its own version
of the command code.

• When a command is called (for example open or read) via
a vnode, that vnode has several options:

→ Do the requested operation and return a result.
→ Pass the operation without change to the next-lower

level in the vnode stack. When the operation returns
from the lower vnode, it may modify the results or
simply return them.

→ Modify the parameters provided with the request and
pass the operation to the next-lower level. The result
from the lower level may be modified or returned
without change.

If the call propagates to the bottom of the vnode-stack without
any layer taking action on it, an error code “operation not
supported” is returned.

34

Stackable filesystems, cont.

In FreeBSD, the operations vector is dynamically built at boot
time.

Together with stacked vnodes, this gives two problems:

1. The filesystem must be able to bypass operations that are
not defined in the filesystem implementation.

2. It must be possible to handle parameters to not
implemented operations (which are of unknown type).

Solution to these problems:

1. Not defined operations are handled by a bypass operation.

2. To be able to handle the parameters, they are always
packed into an argument structure that is passed as a
single parameter to the vnode operation (fig. 6.11)

35

The Union filesystem

• The union filesystem can mount a filesystem atop of
another existing filesystem.

• Unlike normal mounts, both filesystems are visible after
the mount (fig. 6.13).

• The union filesystem is implemented using stackable
vnodes.

• All levels below the top layer are read-only.

• If a file residing in a layer is opened for writing it is copied
to the top level.

• Removal of a file at a lower level is tricky, because this
level may not be written.

• It is solved by placing a whiteout file at the top level.

• The without file have an inode number of 1 and the same
component name as the file it is blocking.

36

The Union filesystem, cont.

Possible uses for the union filesystem:

• To compile programs for several architectures from a
common NFS-mounted source text and get the object files
in local directories.

• To compile sources on a CD-ROM without having to copy
the source texts.

37

