
Fork - Creation of a New Process

• Reserve virtual address space for the child process

→ Total virtual memory = physical memory available for
page frames + total swap space

• Allocate process entry and a thread structure for the
child and copy data from parent.

• Allocate a user structure and kernel stack, copying from
parent to initialize them.

• Allocate a vmspace structure

• Create copies of the parent vm map entry structures:

→ If it is read-only, use a copy of the parents
vm map entry

→ If the region is privately mapped, mark it COW in
both child and parent

• Arrange for the child process to return 0, and for the
parent to return the PID of the child.

1

Fork - Comments

The kernel should ensure that it do not promise to provide
more virtual memory than it can deliver.

• A process should get an error from a system call (such
as fork or mmap) if there is not enough virtual memory
available.

• If the kernel promises more virtual memory than it can
support, it can run into deadlock when trying to service
a page fault.

→ The problem arises when it has no free page frame
and no swap space available to save an active page.
Here, the kernel will have no other choice but to kill
the process unfortunate enough to be page faulting.
Unacceptable!

2

Exec - Execution of a File

• Validate that the file is executable

• Copy the arguments to a temporary area in the kernel

• Reserve virtual memory for the new areas

• Release the current code and memory areas

• Allocate a new vmspace structure and four
vm map entry structures

→ COW, fill-from-file entry for the code segment
∗ COW (instead of RO) for debugging

→ Private COW, fill-from-file entry for initialized data
(.data)

→ Anonymous zero-fill-on-demand entry for
uninitialized data (.bss)

→ Anonymous zero-fill-on-demand entry for stack

• Each vm map entry filled in with a pointer to an existing
or new object.

3

Exec - How to find out if the program file is
already in use by another process?

• If the file is already used by another process, the code
segment should be shared with that process.

• The same program means that it is loaded from the
same file, making the file inode a unique identifier of the
program.

• When the file is opened, its path name is translated to
an inode.

• If the file is used by another program, its inode is
already present in the inode cache.

• All cached inodes point to a related vnode.

• If the vnode represents background memory for an
object, it points to the object structure for the object.

4

Change of Process Size

• A process can increase the size of its .bss area (malloc
area) by using the system call sbrk.

→ Verify that virtual memory resources are available.
→ Verify that the requested virtual addresses are free.
→ If possible, increase the ending address of an

already existing vm map entry.
∗ If the swap object used by the vm map entry has

more than one reference, a new vm map entry
has to be allocated.

5

Mmap - Implementation

Using mmap() a specific virtual address (VA) can be given.

• If the new VA interval overlaps an existing mapping, the
old mapping is deallocated.

• Create a new vm map entry structure to describe the
region.

• Set vm map entry to reference an existing object, or
create a new object.

6

Exit - Termination of a Process

When a process calls exit, its virtual memory resources
must be freed both in main memory and on the swap area:

• Traverse the vm map entry list

→ If the last reference to a shadow object, throw away
→ If the last reference to an anonymous object, throw

away.
→ If the last reference to a file object , save the object in

the vnode cache (sorted in LRU order)

• With all its resources free, the process becomes a
zombie and wakes its parent.

• The parent collects the exit status with a wait system
call.

→ Process structure, user structure and kernel stack
are returned to the zone allocator.

7

Pager Interface

• The pager interface provides the mechanism for moving
data between the backing store and physical memory.

• Each object has an associated pager that is called to
perform data transports.

• The pager is identified by its type.

• Each pager registers a set of functions that define its
operations.

• Some information needed by the pager is stored in the
object structure and information specific to a page is
stored in the vm page structure.

At page fault if the page is not resident:

• Allocate a vm page structure

• Record the offset within the object and add the vm page
structure to the object’s list of vm page structures.

• Call the pager to fill the page frame with data.

8

Pager Interface, cont.

The pager is also used by the pageout daemon to save
modified pages.
Seven operations exist:

pgo init() Called at boot to initialize the pager.

pgo alloc(handle,...) Create an “instance” of the pager.
Handle is a pointer to a vnode for the vnode pager.

pgo dealloc(object) Called when the objects reference
counter has become zero to deallocate the pager.

pgo getpages(object,marray[],...) Called by the
pagefault handler to fill one or more page frames with
data. marray is an array of pointers to vm page
structures.

pgo putpages(object,marray[],...) Called by the pageout
daemon to rewrite one or more pages to the backing
store.

pgo haspage() Check whether backing store has a page.

pgo pageunswapped() Remove a page from the backing
store (swap pager only).

9

Vnode Pager

The vnode pager handles objects that map files in the
filesystem.

When a file is opened by open, mmap or exec, the
pgo alloc() routine is called.

• If the file is not already mapped, an object structure is
allocated. The vnode and object structures point to
each other.

Pagein/pageout is performed by the
pgo getpages()/pgo putpages() routines.
The I/O is done using a physical-I/O buffer:

• Map the pages into the kernel address space.

• Call the device-driver strategy routine to read/write the
pages.

• Unmap the pages from the kernel address space.

10

Device Pager

• The device pager handles memory mapped hardware
devices like for example a frame buffer for a terminal.

• The device pager do not fill the memory pages with
data.

• The alloc routine allocates an object to handle the
address interval.

• The first reference to a device page will cause a page
fault. A vm page structure is allocated in the objects
private memory and marked as fictitious. The page
frame pointer will point to a physical address in the
device memory.

• The device pager pgo putpages() routine may never be
called (panic).

11

Swap Pager

The swap pager is used by anonymous objects and
shadow objects for temporary storage of modified pages.

• The term swap pager refers to two different pagers;
from the beginning the default default pager is used.

• The default pager provides no backing storage.

• Anonymous areas are filled with zeros by the page fault
handler at the first page fault.

• The first time the default pager’s pgo putpages() routine
is called, the default pager replaces itself with the swap
pager.

The swap pager must be able to do non-blocking disk
operations because it is called from the pageout daemon,
which is not allowed to block.

12

Swap Pager, cont.

For performance reasons, the swap pager use a specially
formated swap area on the disk.

• Swap space is allocated when needed in blocks with
space for 32 contiguous pages.

• To locate a page in the swap area, a global hash table is
used.

• Free space in the swap area is managed by a bitmap
with one bit for each page-sized block of swap space.

→ The bitmap is organized as a radix-tree.

13

Swap Pager, cont.

• When a pageout operation is needed, the swap pager
pgo putpages() routine is called.

• It allocates a buf structure and maps the page frames to
be written into the buffer.

• Because the swap pager may not wait, it marks the
buffer with a callback to the routine
swp pager async iodone().

• When the write operation completes, the interrupt
handler calls swp pager async iodone().

→ Each written page is marked as clean and
vm page io finish() is called to notify the pager.

→ The swap pager unmappes the pages from the buf
structure and releases it.

14

Swap Pager, cont.

Unfortunately, a bug has crept into the design that makes it
possible for the pageout daemon to block, despite the fact
that this is not allowed.

The mechanism is as follows:

• Because the number of swap buffers is constant, a limit
is set on the number of buffers the swap pager may use.

• Once this limit is reached, the pgo putpages() routine
blocks until one of its outstanding writes completes.

• This will block the pageout daemon that called
pgo putpages().

• Under unlucky circumstances, this may deadlock the
system.

15

Page Fault Handler

vm fault(map, addr, type) {
lookup addr in map, returning object/offset/prot

Loop down object chain looking for page {
lookup page at object/offset

if page found in memory {
if (busy) { block until avail; retry }
else { mark page busy; break; }

} else if object has pager {
allocate a page frame;

call pager to fill page frame;

if pager has page { break; }
}
if (no next object) { //Must be in anonymous area

allocate a page frame in first object;

fill page frame with zeros;

break;

} else { continue };
}
if (not first object in chain) {

if (WRITE fault)

copy page to first object; // COW

else if (READ fault) //Referenced new page in COW obj

mark page COW; disable WRITE;

}
if (WRITE enabled)

mark page *not* COW;

enter mapping for page in pagetable;

activate and unbusy page;

}

16

Virtual Memory and Caches

• Two variants of caches:

→ The cache uses virtual addresses
→ The cache uses physical addresses

• With a physically addressed cache, a virtual address
must be translated by the MMU (TLB) before it can be
looked up in the cache.

• A virtually addressed cache uses the virtual address for
lookup and is therefore faster.

• However, the virtual address cache must be flushed
completely after each context switch.

• In systems with many short-running processes, a
virtual-address cache gets flushed so frequent that it is
seldom useful.

17

Page Coloring

• The Intel architecture uses a physical-address cache
referred to as the L1 cache.

• If page frames are randomly assigned to virtual
addresses, two consecutive virtual pages could be
mapped to the same location in the L1 cache, causing
frequent cache misses.

• The role of the page-coloring algorithm is to ensure that
consecutive pages in virtual memory will be consecutive
also from the view of the L1 cache.

• At system startup, each vm page records its color in the
L1 cache so that consecutive page frames always have
different colors (fig. 5.13).

• Each color have its own free list of page frames.

• When an object is created, it is assigned a starting
color.

• When a page fault occurs, a page is taken from the free
list with the preferred color if it is available.

18

Page Replacement

• The page replacement algorithm used in FreeBSD is an
approximation of the Least Actively Used.

• The algorithm uses a reference counter instead of the
single bit used in LRU.

• The algorithm is similar to the one used in 4.4BSD but
its implementation is considerably different.

• The memory is divided in five lists:

Wired: Locked in memory (kernel pages, pages locked
with mlock() and thread stacks of loaded (i.e. not
swapped out) processes.

Active: Actively used by one or more processes.

Inactive: Have content that is still known, but not part of
any active region. May be dirty (modified).

Cache: Have content that is still known, but not part of any
active region. Not dirty, so they may be moved to the
free list when needed.

Free: Have no useful content.

The goal for the paging system is to keep a certain amount
of pages in the free, cache and inactive lists.

19

Page Replacement, cont.

• The replacement algorithm is executed by the pageout
daemon.

• The pageout daemon is a part of the kernel, but runs as
a separate process with its own process structure and
kernel stack to be able to use synchronization
mechanisms such as sleep().

• When the page allocation routine vm page alloc()
discovers that more memory is needed, it starts the
pageout daemon.

• When a page is first brought into memory it is given an
active count of three.

• As each page at the active list is scanned, its reference
bit is checked and if set the active count for the page is
incremented by the number of references to the page.

• If the reference bit is clear, the active count is
decremented.

• Pages that are repeatedly used build up a large active
count that will cause them to remain at the active list
much longer than pages used just once.

20

Page Replacement, cont.

The pageout daemon use the following memory limits for
the lists:

Free min 0.7% target 3%

Cache min 3% target 6%

Inactive min 0% target 4.5%

If the limits are not fulfilled, the pageout daemon moves
pages between the lists.

1. If free count+cache count < free target +
cache min, pageout daemon moves pages from
inactive list to cache list.

2. If free count+cache count+inactive count <

free target + cache min + inactive target , pageout
daemon moves pages from active list to inactive list.

3. If free count < free min, pageout daemon moves
pages from cache list to free list.

21

Page Replacement, cont.

• When the pageout daemon moves pages between
different lists, it scans the lists beginning with the page
that has spent most time at the list (fig. 5.14).

• For each page on the inactive list, the following actions
are possible:

→ If the page is referenced, update the reference
counter and move it back to the active list.

→ If the page is invalid, move it to the front of the free
list.

→ If the page is clean and unreferenced, move it to the
cache list.

→ If the page is seen dirty for the first time, mark it seen
dirty and circulate it another time on the inactive list.

→ If page is seen dirty, start asynchronous write and
move to the end of inactive list.

• The activity is interrupted when enough pages are
found or the end of the list is reached.

• Pages that are moved to the inactive and cache lists,
still have a valid translation in the page table; it is only
the referenced bit that is cleared.

22

Swapping

• Swapping is used if the pageout daemon is unable to
free pages fast enough. This may happen if several
large processes are run on a machine lacking enough
memory for the minimum working sets of the processes.

• If the swap-out daemon can find a process that have
been sleeping for more than 10 seconds it may be
swapped out. If no such process is available a process
that have been sleeping for as briefly as 2 seconds may
be swapped out.

• Active processes are not swapped in FreeBSD5.

• When a process is swapped out all its pages are
marked as invalid, including the page tables, the kernel
stack and the user structure.

• Swap out operations are done by the vmdaemon
(process 3) and swap-in operations are done by the
swappper (process 0).

23

The Swap-In Process

• A process to swap in is selected based on:

• The time it has been swapped out

→ Its nice value
→ The amount of time it has been asleep since it last

ran
→ At swap-in the user area and the kernel stack of each

of its threads are read back from the swap area.

• The process is marked as resident and its runnable
threads are inserted in the run queue.

• The other pages are not read back until they generate a
page fault.

24

Machine Dependent VM - PMAP

• The pmap module exports interface routines that are
used by the machine-independent levels to manipulate
the memory management hardware (MMU).

• Two types of MMU:

→ Multilevel forward-mapped page table (I386)
∗ Indexed by virtual addresses

→ Inverted (reverse-mapped) page table (common in
64-bit architectures)
∗ Indexed by physical addresses

• Page tables for 32-bit addresses may be several Mbyte
big. It is inconvenient to allocate contiguous memory
areas of this size.

• A way to solve the problem is to split the page table into
smaller tables that look like a contiguous area by being
referenced via an extra table (called directory table or
segment table).

• In this case the page number field in the virtual address
is split in two parts (see fig. 5.15)

25

Pmap

• The interface to the pmap module deals with
machine-independent pages and machine-independent
protections.

• The machine-independent page size may be a multiple
of the architecture-supported page size. Thus, pmap
operations must be able to affect more than one
physical page per logical page.

• The pmap routines may act on either a virtual address
range or on all mappings for a physical address.

• Mapping information maintained by the pmap module
must be easily found by both virtual and physical
addresses:

→ Physical-to-virtual lookup uses a list of pv entry
structures, pointed to from the vm page structure, to
find all the page table entries referencing a page.

→ For architectures such as the PC that support
memory resident page tables, the virtual-to-physical
lookup may be a simple emulation of the hardware
page-table traversal.

26

Physical-to-virtual Address lookup

• For all page frames (vm page) that is part of a process
address space there is a corresponding pv entry.

→ In FreeBSD there also exist page frames that are not
part of a process, because the page frames are also
used for the file system buffer cache.

• The purpose of the pv entry structures is to identify the
address space that has the page mapped.

• Fig. 5.16 shows the pv entry references for a set of
pages that have a single mapping.

• when an object is shared between two or more
processes, each physical page get mapped into two or
more sets of page tables.

• To track these multiple references, a chain of pv entry
structures is used as shown in fig. 5.17.

• The vm page structures contains a list head that points
to this chain of pv entry structures.

27

Pmap interface routines

System initialization routines
pmap bootstrap()

• Set up kernel pmap data structures

pmap init()

• Allocates a minimal amount of wired memory for kernel
page tables. The page table space is expanded
dynamically by pmap growkernel() as it is needed.

28

Mapping between virtual addresses (VA) and
physical addresses (PA):

pmap enter(pmap, va, pa, prot, wired)

• Called from the page-fault handler to initialize a new
mapping in the page table.

pmap remove(pmap, start va, end va)

• Remove all mappings for the specified address interval.

29

Pmap Interface Routines, cont.

Change of Access attributes
pmap protect(pmap, start va, end va, prot)

• Change the protection for a region of process address
space.

pmap page protect(pa, prot)

• Change the protection for a physical page in all pmaps.

Initialization of physical pages:
pmap zero page(pa)

pmap copy page(src pa, dst pa)

Management of Page-Usage Information:
pmap is referenced(pa)

pmap clear reference(pa)

pmap is modified(pa)

pmap clear modify(pa)

30

Pmap enter()

• The pmap enter() routine is called from the page-fault
handler to set up a VA/PA mapping.

• The pmap enter routine is also responsible for side
effects such as flushing TLB or cache entries.

• On the PC, pmap enter() must first check whether a
page-table entry exist for the requested address.

• If there is no page table for the address, allocate a
zeroed page table and add the address to the directory
table.

• After ensuring that all page-table resources exist for the
mapping:

1. If a mapping exist for the same address - change of
protection or wiring attributes.

2. If a mapping exists but references a different physical
address - remove old mapping.

3. A page table entry is created and set valid, with cache
and TLB entries flushed as necessary.

4. A pv entry structure is created.

31

