
FreeBSD Virtual-Memory System

• The FreeBSD virtual-memory is based on Mach 2.0 with
updates from Mach 2.5 and Mach 3.0.

• The BSD implementation of this virtual-memory first
appeared in 4.4BSD and has been ported to FreeBSD
with only minor changes.

• Some characteristics of the system:

→ Based on object oriented design principles
→ A clean division between machine dependent and non

machine dependent parts
→ Support for sharing of memory between processes
→ Support for multiprocessor systems

• The virtual-memory system implements a protected
address space into which can be mapped data sources
(objects) such as files.

• Physical memory is used as a cache for recently used
pages from these objects.

1

Layout of Virtual Address Space for a Process

Traditional Unix processes have 4 segments

Text: Program code, R/O (or R/W for debugging) mapping of
a binary file

Data: Initiated data, R/W mapping of a binary file

BSS: Uninitiated data, R/W anonymous mapping (zero-fill)

Stack: R/W anonymous mapping (zero-fill)

• The BSS area can be extended using the C-library
malloc() routine, which allocates dynamic memory at the
heap.

• The malloc() routine uses the sbrk system call to request
extra memory from the system.

• FreeBSD also has the mmap system call that allows for
creation of new memory segments at (in principle)
arbitrary virtual addresses.

2



FreeBSD Virtual Memory - Data Structures

The same basic data structures are used to describe both
kernel and user process virtual memory.

The following data structures are used (see fig. 5.4):

vmspace: Highest level. Encompasses both the
machine-dependent and the machine-independent data
structures.

vm map: Highest level data structure that describes the
machine-independent virtual address space.

vm pmap: Machine dependent data structure that is used
only by the machine-dependent parts of the virtual
memory system.

vm map entry: Describes a virtually contiguous range of
addresses that share protection and inheritance attributes.

object: Describes the source of data for a range of
addresses.

Shadow object Object that represents modified copy of
original data.

vm page: Represents the physical memory. One vm page
structure exist for each page frame in the physical memory

3

Kernel Memory Management

• The kernel’s virtual addresses are permanently mapped
into the high part of every process address space.

• When the system boots, the first task the kernel must do
is to set up data structures to describe its address space.

• The address space is described by a vm map and a list
of vm map entry structures.

• submap Is a kernel-only construct used to isolate
allocation for kernel subsystems.

• The kernel virtual addresses are defined in ascending
address order by the constants K0 to K8 (See fig. 5.5).

K0-K1: Text and data segment

K2-K6: submap

K2-K3: Kernel malloc area

K4-K5: Network buffer area

K7-K8: I/O area

4



Kernel Address-Space Allocation

• Kernel virtual-memory ranges can be either wired (locked
into memory) or pageable.

• Wired memory is allocated with kmem alloc() or
kmem malloc().

kmem alloc() Returns zero-filled memory and may block if
insufficient physical memory is available. Only used to
allocate memory from a specific kernel submap.

kmem malloc() Variant of kmem alloc() with a nonblocking
option. Nonblocking allocations fail if insufficient physical
memory is available. Nonblocking allocations must be
used in interrupt routines.

kmem free() Deallocates kernel memory.

• Pageable kernel virtual memory can be allocated with
kmem alloc pageable() or kmem alloc wait().

• Currently, pageable kernel memory is used only for
temporary storage of exec arguments.

5

Kernel malloc

• The kernel also provides a generalized interface to the
low-level memory allocation routines that is very similar to
the C library malloc() and free() routines.

• In user mode, temporary storage is usually allocated on
the stack.

• Because the kernel has a very limited run-time stack, all
temporary kernel memory must be dynamically allocated
using malloc().

6



Kernel Zone Allocator (Slab Allocator)

Some commonly used data structures in the kernel such as
process control blocks are not well handled by the general
purpose malloc().

These structures share several characteristics:

• They tend to be large and hence wasteful of space if a
power-of-2 memory allocator is used.

• They are often linked together in long lists. If allocation of
each structure begins on a page boundary, linkage
pointers in the blocks will all be on the same line in the
hardware cache, causing each step in the list traversal to
generate a cache miss.

• They often contain locks and lists that must be initialized
before use. If there is a dedicated pool of memory for
each structure, these substructures need to be initialized
only once.

The zone allocator solves these problems by allocating typed
blocks of a fixed size from a reserved memory pool.

A memory pool for every type of object that are to use the
zone allocator must be created with the call uma zcreate().

7

Process Virtual-Address Space

• When a process is created, memory is allocated for the
text, data, bss and stack segments.

• The address space for a process is described by a
vmspace structure that points to a list of vm map entry
structures (see fig. 5.6)

• Each vm map entry structure describes a region of
virtual address space residing between a start address
and an end address. It also have a pointer, to the object
that provides the initial data for the region, and an offset
that describes where within the object the data begins.

8



Page-Fault Dispatch

When a process references a page that is not currently
resident, a page fault occurs. The page-fault handler in the
kernel is presented with the virtual address that caused the
fault.

The fault is handled with the following four steps:

1. Find the vmspace structure for the faulting process.

2. Traverse the vm map entry list to locate the segment that
includes the faulting segment. If the address is not found it
was an illegal reference and a segmentation fault signal is
generated.

3. When the correct vm map entry is found, the address is
converted to an offset within the underlying object.

4. Present the absolute object offset to the underlying object,
which allocates a vm page structure and calls its pager to
fill the page frame with data.

9

Objects

• Objects are used to hold information about either a file or
about an area of anonymous memory.

• Whether a file is mapped by a single process or by many
processes, it will always be represented by a single object.
All vm map entry structures referencing the same file will
point to the same object structure.

• An object stores the following information:

→ A list of vm page structures for all pages in the object
that are currently resident in main memory.

→ The number of page frames held by the object.
→ A reference count on the number of vm map entry

structures and other objects that reference the object.
→ The size of the file or anonymous data area described

by the object.
→ Pointer to shadow objects.
→ Pointer to pager for the object.

10



Types of Objects

There are three types of objects in the system:

Named objects represent files or certain hardware devices.

Anonymous objects represent areas of memory that are
zero filled at first use and abandoned when they are no
longer needed.

Shadow objects hold private copies of pages that have been
modified; they are abandoned when they are no longer
referenced.

• The type of an object is defined by the type of pager the
object uses.

• A named object uses the vnode pager if it is backed by a
file and the device pager if it maps a hardware device.

• Anonymous objects use the swap pager.

• Shadow objects also use the swap pager.

11

Objects to Pages

When the system boots, memory is first assigned to the
kernel.

All remaining memory can be used for page frames.

• Every page frame is described by a vm page structure
that point to the physical memory address for the page.

• Initially, all the vm page structures are placed on the
memory free list and marked as free.

• The first time a page frame is allocated to an object, its
vm page structure is moved to the object’s vm page list
and marked as active.

• If a page is already present in memory, it can be located
using a hashing mechanism that maps <object, offset> to
vm page.

12



Mmap - Shared Memory

A process can add a new memory area to its address space
using the system call mmap.

The mmap system call maps a file into the process virtual
address space.mmap(addr t addr, size t len, int prot,int flags, int fd, off t offset)

addr virtual base address for the segment

len segment length

prot read, write or exec

flags map shared, map private or map anon

fd file descriptor for the file to map

offset the mapping begins at address offset in file

13

Mmap

• Two processes can create a shared memory area by
requesting a shared mapping of the same file.

→ Changes in a shared mapping are written back to the
file and are visible to other processes.

→ Changes made to a private mapping are not written
back and are invisible to other processes.

• If the anon flag is set, an anonymous area for temporary
process communication is created.

• If map anon is set, filedescriptor should be -1

• Another way to get a temporary area for process
communication is to map a file on a memory-resident file
system.

14



Shared Memory - More System Calls

A mapped memory region can be removed with the system
call:munmap(addr t addr, size t len)

A process can change the protection on a memory region
with:mprotet(addr t addr, int len, int prot)

A process can prevent a memory region from being paged
out with:mlok(addr t addr, size t len)

• Can be used by processes with soft real-time
requirements.

• To prevent a single process from acquiring all physical
memory, there is a limit on the amount of memory that
may be locked.

15

Shared Memory - More System Calls

A locked memory region can be unlocked with unlock.

A process can force all modified pages in a specific memory
region to be rewritten to disk with:msyn(addr t addr, int len)

Only modified pages in within the specified region are
rewritten. Has no effect on anonymous regions.

16



Shared Mapping - implementation

• Each mapping that a process has to a file is described by
a vm map entry structure.

• A shared region is described by only one object structure
and all vm map entry structures that reference the shared
region point to the same object structure. (see fig. 5.7)

17

Private Mapping - Implementation

• If a process has requested a private mapping, changes to
the memory mapping are not visible to other processes
and are not written back to the file.

• A private mapping is set up as COW (Copy On Write)
when it is created.

• When a process writes to the region, the kernel makes a
copy of the page and creates a shadow object to describe
the modified page (see fig. 5.8).

• In fig. 5.8 process A has modified page 0 of the privately
mapped file object. The kernel has copied the page to a
shadow object.

• When a page fault for a private mapping occurs, the
kernel traverses the list of objects headed by the
vm map entry. The first object in the list that has the
desired page is used.

• If the search reaches the last object in the list the page is
requested from the file object.

18



Private Mapping - fork

• When a process forks, its list of vm map entry structures
is copied to the child process. All privately mapped
regions are marked COW both in the parent and child
processes.

• When any of the processes writes to a private region, the
page is copied and a new shadow object is created (see
fig.5.9).

• When a private mapping is removed (due to munmap or
exit) all pages in the shadow object are moved to the free
list. The content is not rewritten to the file.

• When a child process terminates, the parent is often left
with a chain of shadow objects that are not needed any
more.

• These shadow objects can be collapsed to a single
shadow object.

• Unfortunately the collapse of shadow object chains is
complicated and may be time consuming. FreeBSD uses
a more efficient method for this than earlier versions of
BSD.

19


