Processes

Processes execute in user mode (application code) or
kernel mode (operating system code).

The user mode state consists of the processor registers
and of the content of the memory segments.

The kernel mode state consists of the processor registers
and the information the kernel stores about the process.
The kernel state for each process is divided into several
different data structures (fig. 4.1).

The top level data structures are the process structure
and the user structure.

In old Unix systems the user structure contained data that
was not needed when the process was swapped out.

In FreeBSD the user structure is used for only a couple of
structures referenced from the process structure.

A new thread structure has been introduced in FreeBSD
to keep information about a single thread.

Process structure

The process structure contains:

e Process identification (PID)

e signal state

e timers: real-time and CPU-utilization counters
e Pointers to the substructures



Process structure, cont.

The process substructures (fig. 4.1) have the following
categories of information:

Process-group identification
User credentials (UID, GID)
Memory management

File descriptors

Resource accounting
Statistics

Signal actions

Thread structure

Processes can be in any of the following states: NEW,
NORMAL, or ZOMBIE.

A process in NORMAL state can be RUNNABLE, SLEEPING

or STOPPED.

Thread structure

The thread structure contains the following categories of
information:

Scheduling: for example thread priority

Thread state: (runnable, sleeping), and wait channel if
sleeping.

Machine state: the machine dependent thread information

TCB (Thread Control Block): the user and kernel mode
execution states including MMU registers

Kernel stack: the per-thread execution stack for the kernel



Process Lists

The kernel keeps track of a process by inserting its
process entry (object of type process struct) into different
lists.

Process entries are on the zombproc list if the process is
in the ZOMBIE state.

Other processes are on the allproc list

Most threads, except the currently running thread are also
in one of two queues: the run queue or the sleep queue.
The run queues are organized according to the
scheduling priority.

The sleep queues are organized in data structures that
are hashed by event identifier (wait channel).

Scheduling - priorities

CPU time is made available to the processes based on
their scheduling class and scheduling priority.

The FreeBSD kernel has two kernel and three user mode
scheduling classes (fig. 4.2).

A thread has two scheduling priorities: one for scheduling
user-mode execution (kg-_usr_pri) and one for scheduling
kernel mode execution (td_priority).

Priorities range between 0 and 255, with lower values
interpreted as a higher priority.

User mode priorities range from 128 to 255.

Priorities less than 128 is only used when a thread is
asleep in the kernel and immediately after the thread is
awakened.

A thread that is asleep will be awakened by a signal only if
it sets the PCATCH flag when msleep() is called.



User structure

Historically, the user struct has been located at a fixed virtual
address in the kernel, that was remapped at every context
switch. There were three reasons for this:

1. In many architectures user struct could be mapped on top
of the process address space. This simplified saving of
process state.

2. User struct could always be addressed on a fixed address
via U.XxX.

3. When a process forks, its kernel stack is copied. Because
the kernel stack was located in the user struct, it was
located at the same virtual address in the child and parent
processes.

On architectures with virtual address caches, mapping user
struct to a fixed address is slow and inconvenient. For this
reason user struct is not located at a fixed virtual address in
FreeBSD 5.2.

A problem is that the kernel stack, now located in the thread
struct, will get different virtual addresses in the child and
parent processes. In FreeBSD 5.2 this problem is solved by
eliminating all but the top call frame from the child’s stack
after it is copied from the parent so that it returns directly to
user mode.

Context Switching

A voluntary context switch occurs when a thread blocks
because it requires a resource that is unavailable.

An involuntary context switch takes place when a thread
executes for the duration of its time slice or when the
system identifies a higher-priority thread.

Voluntary context switches are synchronous with respect
to the currently executing thread whereas involuntary
context switches are asynchronous.

Voluntary context switches are initiated by calling the
kernel subroutine msleep().

An involuntary context switch is forced by direct invocation
of the low-level context-switching routines mi_switch() and
setrunnable().



Thread State

Context switching requires that user-mode and kernel-mode
state is changed.

To simplify context switching, the complete user-mode state
is stored in thread struct when the process is not executing in
user mode.

Process state:

e Kernel-mode hardware-execution state. Saved in
thread struct TCB at context switches.

e User-mode hardware-execution state. Saved at kernel
stack (thread struct) every time the kernel is entered.

e process struct. Always memory resident.

e Memory resources. Described by the
memory-management registers which are saved in thread

struct TCB at every context switch. As long as the process
remains in memory, these values will remain valid.

Low level context switches are performed by the dispatching
routine mi_switch().

Voluntary Context Switching

When msleep() is called a priority and a wait channel are
given as parameters.

The priority specified in msleep() is the priority that should
be assigned to the process when it is awakened and is
only used in kernel mode.

The wait channel is typically the address of some data
structure that identifies the resource or the event the
process is waiting for.

When an event occurs, all threads sleeping on that wait
channel will be awakened by a call to wakeup().

10



Voluntary Context Switching cont.

In some cases a special wait channel is used.

e The global variable Ibolt is awakened once per second.

e When a parent process does a wait system call, it will
sleep on its own process structure. When a child
terminates it will wake the parent’s process structure.

11

Msleep() - implementation

Sleeping processes are organized in an array of queues (fig.
4.3).

Msleep() and wakeup() hash the wait channel to calculate an
index into the sleep queues.

Msleep() takes the following steps in its operation:

1.
2.

Block interrupts by acquiring the sched_lock mutex.

Save wait channel in thread struct and hash the wait
channel to locate a sleep queue for the thread.

Set the thread’s priority to the value it will have when it is
awakened and set the SLEEPING flag.

Put the thread at the end of the sleep queue selected in 2.

Call mi_switch() to request that another thread is
scheduled. The Sched_lock mutex is released as part of
switching to the other thread.

12



Wakeup() - implementation

Wakeup() processes the entire sleep queue for the specified
wait channel. For every thread that need to be awakened it
does the following:

1.
2.

Removes the thread from the sleep queue.

Recompute the user-mode priority if the thread has been
sleeping for more than one second.

If the thread is in SLEEP state, place it in the run queue
(for other cases, see the book).

If a process that wakeup() moved to the run queue has higher
priority than the currently executing process, wakeup() will
also request that the CPU is rescheduled as soon as
possible.

13

Synchronization

Older BSD kernels only supported one processor.

In this case locking was needed only due to interrupts and
if msleep() was called.

The result was that a simple locking algorithm could be
used.

Symmetric Multiprocessors (SMP) are much more
demanding on locking.

In the first BSD kernels with support for SMP, a “giant
lock” was used to lock the whole kernel.

This mechanism do not allow any parallelism at all and
gives unacceptable performance on a SMP.

In FreeBSD 5.0 more fine grained locking was introduced.

14



Synchronization in old single-processor
Kernels

The access to internal data structures was synchronized by
two flags, LOCKED and WANTED.

Protocol to request access to a resource (data structure):

if LOCKED

set WANTED;

sleep (WCHAN_X, priority);
else

set LOCKED;

use resource;

clear LOCKED;

if WANTED wakeup(WCHAN_X);
end if;

For access to data structures that were called from interrupt
level (bottom half), the priority level also needed to be raised.

s = splbio(); /* raise priority */
use buffer;
splx(s); /* restore priority */

15

Mutex Synchronization

The FreeBSD 5 locking mechanism is modeled after Posix
threads and use mutexes and condition variables.

There are two variants of mutexes, spin mutexes (busy
wait) and sleep mutexes (context switch).

In principle, a spin mutex is preferred if the waiting time for
the lock is shorter than two context switches.

The strategy in FreeBSD 5 is to use sleep mutexes as
default.

Implementation of the mutex operations requires atomic
instructions such as test_and_set.

The interrupts are always disabled when a process is
holding a spin lock.

It is not allowed to go to sleep while holding a spin mutex

A mutex is owned by the process that locked it and can
only be unlocked by this process.

16



Mutex procedures

All the procedures take a lock variable as parameter.

The most common operations on mutexes are:

mtx_init() Must be called to initiate the mutex before it can
be used.

mtx_lock() Tries to lock the mutex. It the mutex is already
locked, a context switch is done.

mtx_lock_spin() Similar to mtx_lock, but spins instead of
doing a context switch.

mtx_trylock() Tries to lock a mutex. Returns 1 if the locking
succeeded and otherwise 0.

mtx_unlock() Unlock a mutex. If a process with higher
priority is waiting on the mutex, a context switch is done.

mtx_unlock_spin() Unlocks a spin mutex. The interrupt
state is restored to its state before the lock was acquired.

17

Lock-manager locks

For situations where reading is much more common than
writing, so called shared/exclusive locks are suitable.
This type of locks are also called reader/writer locks.
In FreeBSD there is a lockmgr routine to handle such
locks.

Lockmgr allows the following operations:

- shared

- exclusive

- upgrade

- exclusive upgrade

- downgrade

- release

18



Synchronization and deadlock

e Because FreeBSD now supports SMP, there is always the

risk of deadlock, if a process i holding more than one lock.

e To prevent deadlock, all resources are grouped into

classes.

e Resources in the same class are selected so that it is

always enough to lock one resource in the class.

Locking rules:

1.
2.

A thread may only acquire one lock in each class.

A thread may acquire a lock in a class with a higher
number than the highest numbered class it already holds
alock in.

There is a withess module that checks that the locking order
is followed.

19

Scheduling

There are two different schedulers in FreeBSD.
Which one to use is selected when the kernel is compiled.

The new ULE scheduler is designed to get good SMP
performance.

The old scheduler uses a variant of multilevel feedback
gueues.

The time quanta is 0.1 seconds.

The priority of the processes is dynamically adjusted so
that processes that use much CPU time gets their priority
decreased and processes that are waiting get increased
priority.

20



Priorities

The priority calculation utilizes two variables in process
structure.

kg_estcpu estimates the process’s CPU utilization.

kg_nice value between -20 and +20 that can be set by the
user to increase (if superuser) or decrease the process’s
priority.

e User mode priority is stored in kg_usr_pri and is
calculated every four clock ticks.
- kg_usr_pri = PRI_MIN_TIMESHARFE +

kg_estcpu/4 + 2 x kg_nice (Eq. 4.1)

e The hardclock() routine, which is called everyl0 ms
increments kg-estcpu for the executing process.

e When kg_estcpu for a process has been incremented four
times, the setpriority() routine is called to recalculate the
priority according to equation 4.1.

21

Priorities, cont.

In addition, kg_estcpu for runnable processes is adjusted
once a second via a digital decay filer run by the schedcpu()
routine:

kg_est 2xload @ estepu+ kgonice (4.2)

-esitcpy = —————— —esitcpu -nwce .

g b 2% load + 1 g P g

e load is the average number of processes in the ready
gueue during the previous minute.

e For processes that have been sleeping for more than 1
second, the adjustment of kg_estcpu is calculated by
wakeup() when the process is awakened using the
formula:

2xload
2xload+1

e Kg_slptime is the number of seconds the process have
been blocked.

e The effect of the decay filter is that 90% of the CPU
utilization is forgotten after 5 seconds.

kg—slptime
] x kg_estcpu (Eq. 4.3)

e kg_estcpu = [

22



Run Queues and Context Switching

The scheduler uses 64 queues that are selected in priority
order (fig. 4.6).

As there are 256 different priorities, the correct run queue
is selected by dividing the priority with 4.

To save time, the threads on a specific queue are not
sorted in priority order.

A 64 bit bit-vector, rg_status, is used to identify nonempty
gueues.

Context-switching is done by the routine mi_switch() that
calls the machine-dependent optimized routine
cpu_switch() to do the actual work.

If the context-switch is initiated from top-half mi_switch()
can be called immediately from msleep().

If the context-switch is due to an interrupt, the interrupt
thread will usually not want to call mi_switch() itself but
instead it sets a NEEDRESCHED flag and activates a
software interrupt that will call mi_switch() at the
conclusion of the interrupt.

In architectures that do not support software interrupts, a
reschedule flag is tested at the return from every system
call, trap and interrupt.

23

The ULE Scheduler

Goals:

e Support for SMP (Symmetric Multi Processing)

e Give O(1) scheduling time. That is, the scheduling time do
not depend on the number of threads in the system.

e Support processor affinity in SMP systems.

Processor affinity means that a process is not moved to
another processor unless there is a very strong reason to do
so.

24



ULE - Background

e To move a process from one processor to another is
expensive because all data that the process had in
caches need to be reloaded.

e The problem is somewhat smaller with SMT (Symmetric
Multi Threading), also called hyperthreading.

e Here all the threads share memory and caches.

25

ULE - Implementation

e The ULE scheduler do not use priorities to get a fair
division of processing time between the processes,
instead two queues are used that are switched when the
current queue becomes empty.

e A process is placed in a certain queue until it blocks or its
time quanta runs out.

e For every CPU there are three queues.

Idle is only used for the idle-thread that executes only when
the other two queues are empty.

current Interactive threads, interrupt- and realtime-threads
are placed here. Processes are scheduled in priority order
from this queue until it becomes empty.

next Noninteractive threads are placed here. When the
current queue becomes empty, next and current are
switched.

26



ULE - Implementation Cont.

e A thread is considered to be interactive if the ratio
between its voluntary sleep time versus its run time is
below a certain threshold.

m = (maximum interactivity_score)/2
Interactivity_score is calculated by the formulas:

sleep>run interactivity_score = m/ (sleep/run)
sleep<run interactivity_score = 2m - m/ (run/sleep)

e Threads with an interactivity_score below an
experimentally chosen threshold are considered to be
interactive.

e The interactivity_score is calculated by the subroutine
sched_interact_update(), which is called at several
occasions - for example when a thread is awakened by a
wakeup() call.

27

ULE - Load Balancing

ULE uses two methods to balance the load between the
CPU:s.

Whenever a processor is idle it sets a bit in a global
bitmask.

Whenever an active CPU is about to add work to its own
run queue, it first checks to see if it has excess work and if
another processor is idle.

If an idle processor is found, the process is migrated to the
idle processor using an IPI (Inter Processor Interrupt).
The other method is “push migration” that is performed
two times per second by sched_balance().
Sched_balance() picks the most-loaded and the
least-loaded processors in the system and equalizes their
run queues.

28



Process Creation

e New processes are created with fork, vfork or rfork.

e The fork system call creates a complete copy of the
parent.

e The rfork system call creates a new process that shares a
selected set of resources with its parent.

e The vfork system call shares the page tables for the code
and data segments with the parent.

All fork system calls involves three main steps:

e Allocating and initializing a new process structure for the
child process.

e Duplicating the context of the the parent for the child
process (including thread struct and virtual memory
resources).

e Place the child on the correct run queue.

29

Process Termination

Processes terminate through an exit system call or as the
result of a signal.

Within the kernel, a process is terminated by calling the exit()
subroutine:

First all other threads that belong to the process are
terminated in the following way:

e Any thread entering the kernel from user space will invoke
thread_exit() when it traps into the kernel.

e Threads already in the kernel calling sleep will return
immediately with EINTR or EAGAIN. When they try to
return from the kernel thread_exit() is called.

After this exit() cleans up the kernel mode execution state:

e Cancels any pending timers.

e Releases virtual-memory resources.

e Closes open descriptors.

e Handles stopped or traced child processes.

30



Process Termination cont.

The process is moved from the allproc list to the zombie list.
The exit() routine when does the following:

e Records the termination status.
e Bundles up a copy of the process’s resource usage.
e Notifies the parent process.

Normally, the parent has called wait4 and is awakened.

The wait4 call will search for child processes in ZOMBIE
state. For every ZOMBIE process that matches the wait
criterion, the termination status is copied and the process
entry is freed.

31

Signals

FreeBSD signals are designed to be software equivalents
of hardware interrupts or traps.

Each signal has an associated default action that specifies
how it should be handled if nothing else is requested (Tab
4.4).

A program can request an alternate handling by using the
sigaction system call:

- lgnore the signal

- Call a user-written signal handler

- Taking the default action

Like hardware interrupts, signals can be temporarily
blocked by using the system call sigprocmask.

If the process have several threads, the handling of
signals is independently specified by each thread.

The system call sigalstack can be used to specify that a
special signal stack shall be used for signal handling.

32



Implementation of signals

The implementation of signals is broken up in two parts:
posting a signal to a process and delivering it to the target
thread.

A signal can be posted at any time from any code in the
kernel by calling the psignal() subroutine.

A posted signal is normally added to the set of pending
signals for the appropriate thread.

When a signal is raised because of the action of the
currently executing thread, it is only delivered to that
thread.

Other signals are delivered to the first thread that do not
have it masked.

Due to many special cases, the signal handling is
complicated (See the book).

Delivery of signals is normally possible only when the
thread is executing.

33

Delivery of signals

Each time a thread returns from a call to sleep() (with the
PCATCH flag set) or from a system call, it is checked if a
signal is pending delivery.
Delivery of signals are done by the following code to be
found in many places in the kernel code:

if (sig = CURSIG(curthread))

postsig(sig);

CURSIG is a macro that examines if there is an unmasked
signal in td_siglist for the running thread. If this is the
case, the number of the signal is returned.

If delivery of the signal results in the process being
terminated, this is done by CURSIG otherwise postsig() is
called.

Postsig() takes care of two special cases:

- Producing a core dump
- Invoking a signal handler (Fig. 4.8)

Postsig() is implemented by calling the machine
dependent sendsig() routine.

34



Process Groups and Sessions

A process group is a collection of related processes, such
as a shell pipeline, that have the same process-group
identifier.

A process is always a member of a single process group.

When a process is created, it is placed in the same
process group as its parent.

A process can change its own process group or that of a
child process using the setpgid system call.

If a process calls setpgid to set its process-group identifier
to the same value as its PID, a hew process group is
created with the process as process-group leader.

When a shell creates a new process to execute a
command, the process calls setpgid to set its
process-group identifier to the same value as its PID
before executing the command.

This creates a new process group with the process as
process-group leader.

If the command is part of a pipeline, each additional
process in the pipeline will call setpgid to join the existing
process group.

For each new process group, the kernel allocates a
process-group structure (p_pgrp).

35

Sessions

A session is a collection of one or more process groups.

Normally, all processes created by the same login shell
belongs to the same session.

A process ,usually a login shell, may create a new session
by calling the setsid system call, becoming the session
leader for the session.

A session may have an associated controlling terminal
that is used for communicating with the user.

Only a session leader may allocate a controlling terminal,
becoming a controlling process when it does so.

The controlling terminal communicates with the process
group executing in the foreground.

All other process groups in the session executes in the
background.

36



Job Control

The original reason that the complex mechanisms with
process-groups and sessions were added to the system,
was the job control mechanism originally implemented for
the C shell in BSD4.1 Unix.

The process groups are also important for the signal
handling and for window systems like X.

The Job control mechanism allows a job (that is a process
group) to be stopped (with CTRL Z) and restarted (with
fg).

A stopped job can also be started in the background with
the command bg.

Signals that are generated from the key board, are sent to
all processes in the foreground process group.

37

Job Control cont.

If a controlling process exits (the user logs out), the
system revokes further access to the the controlling
terminal and sends a SIGHUP signal to the foreground
process group.

When a job-control shell exits, each process group that it
created becomes an orphaned process group.

Each such orphaned process group is sent a SIGHUP
signal and a CONTINUE signal if any of its members are
stopped.

Background processes that catch or ignore hangup
signals can continue to execute after the controlling
process has terminated.

38



