Network Protocols

The IPv4 protocol stack was the first set of protocols

implemented within the network architecture of 4.2BSD.

The protocols themselves were originally implemented
at BBN (Bolt, Beranek and Newman) as part of a
DARPA project.

The IPv4 protocol stack is still the most important
protocol stack in FreeBSD.

This protocol implementation is the standard on which
the current Internet is built.

The description in chapter 13 is concentrated on the
IPv4 stack although IPv6 and IPSec are also covered
but not included in this course.

IPv4 Network Protocols

The layering of the IPv4 protocols is illustrated in
Fig.13.1.

All the protocols use the services of IP.

The transport level protocols, TCP and UDP, add a port
identifier to IP’s host identifier so that sockets (and
processes) can be identified.

The Internet Control Message Protocol (ICMP) is used
for error reporting and simple network management
tasks.

Raw access to IP and ICMP is possible through raw
sockets.

The Internet protocols was designed for a
heterogeneous environment.

- Not even the byte is of the same size on all systems.

- The network protocols specify the data unit to be an
octet - an 8-bit byte.

- All fields in the Internet protocols larger than an octet
are expressed in network byte order, with the most
significant octet first.

- The network implementation use macros to convert
16-bit and 32-bit fields between host and network
byte order.

IPv4 Addresses

An IPv4 address is a 32-bit number that identifies the
network at which a host resides and also uniquely
identifies a network interface on that host.

Network addresses are assigned in blocks by Regional
Internet Registries (RIRS) to Internet Service Providers
(ISPs), which then give out addresses to companies or
individual users.

Historically IPv4 addresses were divided into three
classes (A, B and C) with a different number of network
address bits in each class.

The current IPv4 address scheme is called Classless
Inter-Domain Routing (CIDR).

In the CIDR scheme each organization is given a
contiguous group of addresses described by a single
value and a network mask.

It is because of this addressing scheme that routing
entries store arbitrary netmasks with routes.

IPv4 Addresses cont.

Each Internet address is maintained in an in_ifaddr
struct (Fig. 13.2).

The network mask for an interface is recorded in the
ia_subnetmask field.

The address of the subnet connected to an interface is
stored in the ia_subnet field.

If the address in a received packet masked with

ia_subnetmask equals ia_subnet, the packet is for a
local subnet.

Broadcast Addresses

e Originally 4.2 BSD used the address with a host part of

zero for broadcasts.

e Later the broadcast address was defined to be the
address with a host part of all 1s.

e On input, FreeBSD recognizes broadcast addresses
with host parts of all Os or all 1s and also the address
with 32 bits of 1.

Internet Multicast

IP multicasts are sent using destination addresses with
the high-order bits set to 1110.

Multicast addresses do not contain network and host
parts, instead the entire address names a group using a
particular service.

IP multicast addresses map directly to physical
multicast addresses at networks such as Ethernet.

For a socket to use multicast it must join a multicast
group using the setsockopt system call.

The setsockopt call informs the link layer that it should
receive multicasts for the corresponding link-layer
address.

Internet Ports and Associations

At the IP level, packets are addressed to hosts.

However, each packet contains an 8-bit protocol number
that identifies the protocol that is one level up in the
stack.

The transport protocols TCP and UDP use 16-bit port
numbers to designate the connection or communication
ports on a host.

Each transport protocol maintains its own mapping
between port numbers and processes or descriptors.

An association is specified by a tuple <source address,
destination address, protocol number, source port,
destination port>.

Connection oriented protocols must enforce the
uniqueness of associations - other protocols usually do
so as well.

Protocol Control Blocks

For each TCP- or UDP-based socket, an Internet
protocol control block (inpcb struct) is created (Fig.
13.3).

The inpcb struct hold Internet addresses, port numbers
and pointers to auxiliary data structures.

TCP in addition creates a TCP control block (tcpcb
struct) to hold the protocol state information needed for
its implementation.

Internet control blocks for use with TCP are held on a
doubly linked list private to the TCP module.

Internet control blocks for use with UDP are held on a
similar list private to the UDP module.

Two separate lists are needed because each transport
protocol has a distinct space of port identifiers.

There are a set of common routines to maintain the
inpcb lists.

IP demultipexes incoming packets based on the
protocol identifier.

Each higher level protocol is then responsible for

checking its list of inpcb blocks to direct a message to
the correct socket.

User Datagram Protocol (UDP)

UDP is a simple unreliable datagram protocol.

e The implementation of the Internet protocols are tightly
coupled.

- Transport protocols send and receive packets
including an IP pseudo_header containing source
and destination addresses, protocol identifier and
packet length.

e UDP protocol headers are extremely simple, containing
only source and destination port numbers, datagram
length and data checksum.

e The udp_output routine also adds an IP pseudo header
to the packet.

UDP

Initialization

e When a new datagram socket is created, the socket
layer locates the protocol-switch for UDP and calls
udp_attach() with the socket as parameter.

e udp_attach() calls in_pcballoc() to create a new protocol
control block (inpcb) on its list of current sockets.

e |t also sets the default limits to the sockets send and
receive buffers.

- This value is used as an upper limit for the datagram
size.

e The UDP protocol-switch entry contains the flag
PR_ATOMIC, requiring all data in a datagram to be sent
at the same time.

e An application program may use the bind system call to
assign a port number to the socket.

e For UDP this call results in a call to udp_bind().

- udp_-bind() calls in_pcbbind() which verifies that the
port number is not in use and records the local part
of the association in inpcb.

- If the address was not specified it is left unspecified.
O In this case any local address will match at input
and on output an appropriate address will be

chosen.

10

UDP - Output

e Typically the system calls sendto or sendmsg are used

to send datagrams.

These system calls will call udp_send() with a mbuf
chain as parameter.

The output routine for UDP is udp_output() that takes
the following parameters:

int udp_output (

struct inpcb *inp, /* Protocol control block */
struct mbuf #*msg, /* The data to send */

struct mbuf *addr, /* Optional dest. address */
struct mbuf *control, /*Optional control info */

struct

thread *td); /* Pointer to process */

To send datagrams the system must also know the

remote part of the association.

A program can specify this address and port with each

send operation or they can be set in advance using the

connect system call.

In either case udp_output() will call in_pcbconnect() to

record the destination address and port in inpcb.

- If the local address is not bound and if a route for the
destination is found, the address to the outgoing
interface is used as local address.

- If no local port number was bound, one is chosen at
this time.

11

UDP - Output Cont.

e Finally udp_output() prepends space for the UDP and IP

headers to the msg mbuf and fills in the headers.
e A checksum is also calculated and added.
e The packet is passed to the IP level by calling
ip_output().

12

UDP - Input

e Each Internet protocol layered directly on top of IP is
called from IP using the following call:

(void) (*pr_input) (
struct mbuf *m, int off);

e The first parameter is an mbuf chain including the IP
header and the second parameter is an offset giving the
size of the IP header.

e For UDP the input routine is named udp _nput().
Udp_input() Implementation:

e Check if the length of the first mbuf is shorter than the
IP plus UDP headers.

- If shorter, call m_pullup() to make the headers
contiguous.

e Check that the packet is of correct length and calculate
the checksum.

- If any test fails - drop the packet.

e Check if multicast message and do special handling if it
IS.

e Call in_pcblookup() with the address and port numbers
in the packet as parameters, to locate the protocol
control block for the receiving socket.

13

UDP - Input Cont.

e There may be several control blocks with the same local
port number but different addresses.

e In this case the inpcb with the best match is selected.
In_pcblookup():

e If an exact association is found that inpcb is selected.
e Check for a wildcard match.

- Any inpcb with correct local port but unspecified local
address, remote port or remote address will match.

If an inpcb is located, the packet is queued in the receive
buffer of the matching socket and a wakeup is made for a
waiting process.

If no inpcb was located, an ICMP port unreachable error
message is sent.

In most cases no one will receive the error message since
associations for UDP usually are temporary.

14

Internet Protocol (IP)

e [P is the protocol responsible for host-to-host
addressing, routing, packet forwarding and packet
fragmentation and reassembly.

e |P does not always operate for a socket at the local host.

e |P may also:

- Forward packets.

- Receive packets for which there is no local socket.

- Generate error packets in response to these
situations.

15

The IP protocol header is shown in Fig. 13.4.
The IP header includes source and destination
addresses and the destination protocol.

The fragment field is used if a packet must be broken
into smaller fragments for transmission.

16

IP Output IP Output

The IP output routine that is called from the transport level The ip_output() routine works as follows:

output routines takes the following parameters: o o
e Fillin IP options if present.

int ip_output (e Fill in the remaining header fields including IP version,
struct mbuf *msg, /* The data to send */ header length.
struct mbuf *opt, ;* Eptio?il 1P opti;iiLmbjf*/ e Determine the route.
struct route *ro, * Norma set to * . .
int flags y e Check for multicast or broadcast and do special

handling in for these cases.
e Do possible IPSec manipulations.
e Do possible packet filtering.

struct ip_moptions *imo, /* Multicast options */
struct inpcb *inp); /* Pointer to inpcb */

e For normal operation only the msg parameter and e If the packet size is no larger than the maximum packet
possibly opt and flags are used. size for the outgoing interface, compute the checksum

e Since cached routes was removed from the inpcb struct and call the if_output() routine to send the packet.
n FreeB$D5.2 the ro parameter Is gsually setto NULL e If the packet size is larger than the maximum packet
and routing lookup is performed by ip_output(). size for the outgoing interface, break the packet in

e The msg mbuf already contains a partially filled in IP fragments and send them in turn.

header allocated by the transport protocol.

17 18

IP Output

Routing step in more detail:

If the ro parameter is NULL, ro is set to point to a local
route struct.

The destination address in the route struct is set to the
destination address in the IP header.

rtalloc() is called to allocate a route.

The returned rtentry struct includes a pointer to an ifnet
struct and an ifaddr struct for the outgoing interface.

If the RTF_GATEWAY flag is set for the route, the
destination address passed to the link layer is set from
the rt_gateway field.

The interface output routine, if_output(), is called via the
pointer in the ifnet struct.

The interface output routine will validate the destination
address and place the packet at the output queue.

An error is returned from the if _output() routine only if
the packet could not be sent.

19

IP Input

e The Iv4 ip_input() routine is typically called from the

swi_net network thread.

The ip_input() routine is called with a mbuf chain that
contains the received packet.

A packet may be processed in four different ways:

- Passed as input to a higher level protocol.

- It encounters an error that is reported back to the
source.

It is dropped due to an error.

- It is forwarded to the next-hop destination.

1

20

Ip_

IP Input

input() Implementation:

Verify that the packet is at least as long as the IPv4
header and ensure that the header is contiguous in one
mbuf.

Checksum the packet header and drop the packet if an
error is detected.

Verify that the packet is at least as long as the header
indicates and drop the packet if it is not.

Do any filtering or IPSec functions.
Process the options in the header.
Check whether the packet is for this host.

- Ifitis not and acting as a router, forward the packet.
If not router drop the packet.
- If for this host - continue processing.

If the packet has been fragmented, keep it until all
fragments has arrived or it is to old.

Pass the packet to the next-higher level protocol.

21

IP Input

Locating next-higher level protocol input routine.

Which pr_input() routine to call is determined by the
8-bit protocol field in the IP header.

The 8-bit protocol identifier gives 256 possible protocols.
All Internet protocols above IP level are called through a
global array of protosw structs, called inetswl].

The inetsw(] array is statically initialized with one entry

for each protocol that is implemented in the system.

To map between the 8-bit protocol number and the

correct entry in inetsw[], the 256 element ip _protox

array is used.

All 256 entries in ip_protox are initially set to index the

raw ip entry in the inetsw[] protocol switch by the

ipinit() routine.

- The ipinit() routine will then cycle through inetsw]],
and for every protocol that has a kernel
implementation it will modify the ip_protox entry to
index the correct inetsw[] entry.

The ip_input() routine will call the next-level protocol

with the following call:

(*inetsw[ip_protox [ip->ip_p]l].pr_input) (m, hlen);

22

IP Forwarding

Details of packet forwarding code:

Check that forwarding is enabled. If not drop the packet.

Check that the destination address is one that allows
forwarding.

Save the IP header and some data bytes in case an
ICMP error message need to be generated.

Determine the route to be used in forwarding the packet.

If the outgoing interface is the same that the packet was
received on, possibly send an ICMP redirect message
to the originating host.

Call ip—output() to send the packet.

If an error is detected, possibly send an ICMP error
message.

23

IP Forwarding

Misconfigured routers may be a big problem for the
Internet.

For this reason the router functions in FreeBSD are
disabled by default.

They may be enabled at runtime with the sysctl system
call.

Hosts not configured as routers never attempt to
forward packets or return error messages in response to
misdirected packets.

24

Transmission Control Protocol (TCP)

TCP includes several features not found in the simpler
protocols such as:

Explicit connection initiation and termination.
Reliable unduplicated delivery of data

Flow control

Out-of-band indication of urgent data.
Congestion avoidance.

25

TCP Protocol

A TCP connection is a bidirectional sequenced stream
of data between two peers.

The stream initiation and termination (SYN and FIN) are
explicit events that occupy positions in the sequence
space of the stream.

Initiation and termination packets are acknowledged in

the same way as data.

- Sequence numbers are 32 bits from a circular space.

The sequence numbers for each direction starts with an

arbitrary value (initial sequence number) sent in the

initial packet for a connection.

- Arbitrary initial sequence numbers are used to
prevent spoofing based on guessing initial sequence
numbers.

Each TCP packet contains:

- The starting sequence number of the data in that
packet.

- An acknowledgment of all contiguous data received
from the remote side.

26

TCP Protocol

The acknowledgment number is the sequence number
of the next packet the site expects to receive.

Acknowledgments are cumulative and thus may
acknowledge more than one packet.

Flow control is done with a sliding-window scheme.

—

Each packet with an acknowledgment contains a
window, that is the number of octets of data that the
receiver is prepared to accept.

The header for TCP is shown in Fig. 13.6.
The TCP header also includes some flags:

—

SYN - “Begin connection by synchronizing sequence
numbers”

FIN - “Finishing of transmission”

ACK - “Acknowledgment field is valid”

RST - “Reset of connection”

URG - “Urgent data present”

PSH - “Push the arriving data up to the application
level”

27

TCP Protocol

The options are encoded in the same way as for IP:
The no-operation and end-of-options are one octet.
All other options contains a type and length.

FreeBSD includes three options along with the SYN
when initiating a connection:

- Maximum receive segment size.

- Window scaling - The number of bits to shift the window
value.

— Timestamp option

The options must be sent in both directions to take

effect.

28

TCP Connection

The normal connection procedure is known as a three-way
handshake:

1. Host A sends SYN
2. Host B sends SYN,ACK
3. Host A sends ACK

e The list of connection states for a TCP connection is
shown in Fig. 13.1 and the state diagram in Fig. 13.7

e After a connection is established, each peer includes an
acknowledgment and window information in each
packet.

e If the sender do not receive an acknowledgment in a
reasonable time, it resends the data.

e If data is received out of order, the receiver generally
retains the data but it cannot be acknowledged until the
missing segment is received.

29

TCP Connection termination

Each peer can terminate a connection at any time by
sending a packet with the FIN bit:

1. The FIN is acknowledged advancing the sequence
number by 1.

2. The acknowledgment of the FIN terminates the
connection.

3. The peer that sends the last ACK of FIN enters the
TIME_WAIT state.

e The peer remains in TIME_WAIT state for 2MSL (two

times Maximum Segment Lifetime).

e The reason for this is the need to repeat the last ACK

if it was lost and the FIN is resent.

30

TCP State Variables

Each TCP connection maintains a large set of state
variables in the TCP control block (tcpchb).

A set of sequence variables are used to keep track of
the send and receive windows (Fig. 13.8).

The sequence variables are explained in Table 13.2.
The sequence variables are used in the output module

to decide if data can be sent, and in the input module to
decide if received data can be accepted.

If the timestamp option is used, the tests to see if
received packets are acceptable are augmented with
checks on the timestamp.

31

TCP Algorithms

TCP processing occurs in response to the following events:

1. Arequest from the user (such as reading or writing
data, or opening or closing a connection).

2. The receipt of a packet for the connection.
3. The expiration of a timer.

e These events are handled by tcp_usr_send(), tcp Jinput()
and a set of timer routines.

- These routines processes the event and makes any
necessary state changes.

— For any transition that requires output, tcp_output() is
called.

32

TCP Algorithms

e The criteria for sending a packet with data or control
information is complicated in TCP.

e Any of the following may allow data to be sent that could
not be sent previously:

- A user write operation.

- The receipt of a window update from the peer.
— The expiration of a retransmission timer.

- The expiration of a window-update timer.

e In addition control packets may be sent due to:

- A change in connection state (e.g. open or close)

- Receipt of data that must be acknowledged.

- A change in the receive window due to removal of data
from the input queue.

- A send request with urgent data.

- A connection abort.

33

TCP Timers

e To prevent the protocol from hanging if packets are lost,
each connection maintains a set of timers.

e The timers are set via the kernel callout service.
e The following timers are used by TCP (Table 13.3):

tcp_timer_rexmt Retransmit timer. Started whenever data
is sent on a connection. Stopped when all
outstanding data on a connection is
acknowledged.

tcp_timer_persist Persist timer. Protects against loss of a
window update. Started when data is ready to
be sent but the send window is too small
unless the retransmit timer is active.

tcp_timer_keep Keepalive timer. This timer have two
different uses:

1. During connection establishment the timer limits the
time for a tree-way-handshake to terminate.

2. A nonstandard timer that may be used to detect idle
connections if the socket level SO _KEEPALIVE option is
set.

34

TCP Timers Cont.

tcp_timer_2msl “Twice the maximum segment lifetime”
timer. Started when a connection enters the
TIME_WAIT state. In FreeBSD also started
when a connection enters the FIN_WAIT 2
state because some TCP implementations fail
to send a FIN on a receive-only connection.

tcp-_timer_delack Delayed ack timer. Explained in section
13.6.

35

TCP Round-Trip Time

The correct value for the retransmission timeout
depends on the delays in the network.

A measure on the network delays is the round-trip time
(rtt) which is the time to receive an acknowledgment for
a sent packet.

The system stores a smoothed average of the
round-trip time (srtt) and a smoothed variance (rttvar).

The initial retransmission timeout is set to srtt + 4*rttvar.

36

TCP Connection Establishment

Two ways for a node to establish a connection:

1. An active connection is established via a connect
system call.

2. A passive connection is created as the result of waiting
on an accept system call.

Active Connection

e When a new TCP socket is created, the socket layer
locates the protocol-switch for TCP and calls
tcp_attach() with the socket as parameter.

e tcp_attach() calls in_pcballoc() to create a new protocol
control block (inpcb) and then creates an additional
TCP control block (tcpchb).

e |If the process calls bind to assign an address or port
number, this is identical to the UDP case.

e The connect system call calls tcp_connect():

- Calls in_pcbconnect() to set up an association -
identical to UDP case.

- Selects an initial sequence number.

- soisconnecting() is called to set the socket in the
SS_ISCONNECTING state.

— The TCP state is set to SYN_SENT.

- The keepalive timer is started (75 sec.).

- tcp-output() is called to send the packet.

37

TCP Connection Establishment cont.

The connect packet normally contains three options:
maximum-segment-size option, window-scale option
and timestamps option.

The maximum-segment-size (MSS) option
communicates the maximum segment size that TCP is
willing to accept on the connection.

The initial MSS value is taken from the MTU value
(maximum transmission unit) in the route for the
destination.

The MTU values in the route table are usually initialized
from the interface MTU value.

TCP can use the Path MTU Discovery method to
discover the real MTU for a connection.

- The network is probed by sending packets with the
IP don't fragment flag set.

- If the packet is to big for some network segment an
ICMP error message is returned which contains the
maximum packet size that is accepted.

- This value is recorded as the new MTU value in the
host cache and the packet is resent.

38

TCP Connection Establishment cont.

Host Cache

e The host cache keeps information on the measured
TCP parameters of past TCP sessions.

e Whenever a new connection is opened, a call is made to
tcp-hc_get() to find information about a past connection.

e Lookup in the cache is on the remote IP address.

e If a cached entry is found, it is used to get better initial
start values for some connection parameters (Table
13.4).

e Can lead to significant speedups for new tcp
connections after the first one.

39

TCP Connection Establishment

Passive Connection

e A socket is created in the same way as for an active
connection.

e Process calls bind to assign an address.

e The process calls listen, which calls usr_tcp disten() to
set the socket in TCPS_LISTEN state.

e When a packet arrives for a TCP socket in
TCPS_LISTEN state:

- Create a new socket with sonewconn().

O

O

Calls tcp-usr_attach() via pru_attach() to create a
new inpcb and a new tcpcb.

Put new socket in so_incomp queue at the original
socket.

- If packet has SYN

O

U
O

Call in_pcbconnect() to record the remote part of
the association in inpcb.

Change state to TCPS_SYN_RECEIVED.

Set keepalive timer and set TF_ACKNOW and call
tcp_output().

tcp_output() sends a SYN/ACK packet.

40

TCP Connection Establishment Cont.

Passive Connection Cont.

e When an ACK arrives for a TCP socket in
TCPS_SYN_RECEIVED state:

- Call soisconnected() to move the socket from the
so_incomp queue to the so_comp queue.

- Change to ESTABLISHED state.

- Wakeup any process sleeping on an accept system
call for the socket.

41

TCP SYN Cache

Unfortunately the normal TCP connection establishment
previously described became the target for a denial of
service attack.

A system could be blocked by sending a flood of SYN

packets to it.

To combat this attack, the syncache was introduced.

The syncache handles the three-way handshake in a

more efficient way than the previous implementation.

When a SYN packet is received for a socket in

TCPS_LISTEN state, syncache_add() is called.

- All information about the arrived SYN packet is
stored in the syncache.

- The state remains TCPS_LISTEN.

- A SYN/ACK packet is returned but no data is
acknowledged.

When an ACK is received for a socket in TCPS_LISTEN

state syncache_expand() is called.

- If a syncache entry is found for the ACK packet, do all
actions that should have been done when SYN was
received and enter TCPS_SYN_RECEIVED state.

tcp_input() finishes the handling of the ACK packet in

the normal way.

42

TCP Connection Shutdown

A TCP connection is symmetrical so either side may

initiate disconnect independently.

As long as one direction of a connection can carry data,

the connection remains open.

A process may indicate that it has completed sending

data with the shutdown() system call.

- tcp-_usr_shutdown() called to switch to
TCP_FIN_WAIT1 state.

- tcp-output() called to send FIN packet.

The receiving socket will advance to

TCPS_CLOSE_WAIT state, but may continue to send

data.

If the process calls close, the socket will also enter

TCP_FIN_WAIT1 state and FIN is sent.

- In this case the socket is changed to
SS_ISDISCONNECTING state and no more data
can be received.

- If data remain in the send buffer, TCP will try to
deliver them.

The socket is freed when the last reference to it

disappears.

43

TCP Input Processing

Tep-input() is called in the same way as udp -input() and
the first steps are very similar.

Locate pcb for port# (if none, send RST).

If socket is in LISTEN state, do connection

establishment for passive connection.

Process options.

Accept data if rcv.wnd>0 and seg# space is within

window (trim data before & after window).

- If revwnd=0, accept packet with no data &
seg#=rcv_nxt.

- If not acceptable, drop & send ACK.

Flags

e if RST, close connection & drop packet
e if ACK not set, drop
e if ACK seq# > previous ack#,

- ifin SYN_RECEIVED & ACK is for SYN, enter
ESTABLISHED state.

- if ACK includes seq# for RTT measurement, average
time sample into srtt.

- if all outstanding data are ack’ed, stop rexmt timer,
else set rexmt to current value.

- drop ack’ed data from socket send queue.

44

TCP Input Processing Cont.

Window update

- if packet seg# > previous update, or same seq# but
ack# is higher, or seq# & ack#'s are the same but
window is larger, record a new window size.

URG
- Process urgent data.

If data begins at rcv_nxt, put data in socket recv buffer
with sbappendstream().

- Otherwise, put in per-connection queue until missing
data arrives.
- Set TF_DELACK in pcb.

If FIN, mark socket with socantrcvmore().

- If sender is closed, mark with soisdisconnected().
- Set TF_ACKNOW.

If needed tcp_output() is called to send a response.

45

TCP Output Processing

Sosend() accumulates data in mbuf chain and calls
tcp_usr_send (pru_send).

tcp_usr_send() calls sbappendstream() to place data in
the sockets send buffer and calls tcp_output().

Allocate mbuf for packet header and call
tcpip_fillheaders() to fill in header.

- call m_copy() to get data from send buffer.
Set seg# from snd_nxt & ack# from rcv_nxt.

- Get flags from connection state.

- Compute window advertisement.

- If out of band data is sent, set URG flag.
- Set PSH, if all data in send buffer is sent.
- Compute checksum.

Call ip_output() to send data.

Start rexmt timer and update snd_nxt & snd_max.

46

