
Network Communication

The network subsystem provides a general-purpose
framework for network communication including:

• A structured interface to the socket level.

• A consistent interface to the hardware devices that
transmit and receive data.

• Network independent support for message routing.

1

Network Communication

The network subsystem is situated below the socket layer
and is logically divided into three layers:

Transport layer The transport layer provides interprocess
data transports and implements the transport level
protocols.

Network layer The network layer is responsible for the
delivery of data to the correct host. It is responsible for
host addressing, routing and if needed packet
fragmentation and reassembly.

Network-interface layer The bottom layer, also called link
layer, is responsible for transmitting data between hosts
connected to a common transmission media.

• The transport, network and network-interface layers of
the network subsystem corresponds to the transport,
network and link layers in the ISO OSI model.

• The internal structure of the network subsystem is not
externally visible, instead all networking facilities are
accessed through the socket interface.

• Each communication protocol that permits external
access to its facilities exports a set of user request
routines to the socket layer.

2



Data Flow

There are only four real paths through a network node:

Inbound Data received at a network interface flows
upward through communication protocols until they are
placed in a receive queue.

Outbound Data delivered by system calls flows down to
the network-interface for transmission.

Forward Whether bridged or routed the packets is not for
this node but to be sent on to another host or network.

Error A packet has arrived that requires the network
subsystem itself to send a response.

• Data flowing upward are received asynchronously and
are passed from the network interface to the
appropriate communication protocol through
per-protocol input message queues (Fig.12.1).

• The system handles inbound network traffic by splitting
the processing of packets between the network driver’s
upper and lower halves:

→ The lower half runs at interrupt level.
→ The upper half of the driver runs as an interrupt

thread that queues the packets for the network
thread swi net.

3

Network thread

The network thread, swi net, is a kernel thread whose sole
job is to handle the network layer protocol input queues.

Once the packet is queued by the device’s interrupt thread,
the swi net thread is responsible for handling the packet:

• If the packet is for a higher level protocol, this protocol is
invoked directly.

• If the packet is for another host and the system is
configured as a router, the packet may be returned to
the network interface for retransmission

4



Communication Protocols

• Protocol modules are described by a protocol-switch
struct (Fig. 12.2) that contains the set of externally
visible entry points and certain attributes.

• The socket layer interacts with a communication
protocol solely through the protocols protocol-switch
struct.

• The protocol-protocol interface in the kernel also use
the protocol-switch struct.

• Before a protocol is used the protocols initialization
routine, pr init() is called.

• Thereafter, the protocol will be invoked for timer-based
actions every 200 ms if the pr fasttimo() entry is present
and every 500 ms if the pr slowtimo() entry is present.

• Protocols mostly use the slower timer, the major use of
the fast timeout is for delayed-acknowledgment
processing for reliable protocols.

5

Communication Protocols

Protocols may pass data between their layers by calling
routines in the protocol-switch table.

The following routines are defined for protocol-protocol
communication:

pr input() Passes data up toward the user.

pr output() Passes data down toward the network.

pr ctlinput() Passes control information up toward the
user.

pr ctloutput() Passes control information down toward
the network.

• The interface between the protocols and the socket
layer is through the pr usrreqs() table.

• On output the lowest level reached must free space
passed as arguments.

• At input the highest level is responsible for freeing
space passed up to it.

• The pr flags field in the protocol-switch struct defines
some aspects of the protocol (Table 12.1).

6



Network Interfaces

• Each network interface configured in the system defines
a link-layer path through which messages can be sent
or received.

• The network interface abstraction provides the protocols
with a consistent interface to all network hardware
devices.

• In most cases a network interface is associated with a
hardware device but it may also use a software
loopback device.

• A network interface and its addresses are described by
the ifnet and ifaddr data structures (Fig. 12.3).

• As network devices are found at system configuration
time, an ifnet struct is allocated, initialized and placed at
a linked list.

• Each network interface is identified in two ways: a
character string (e.g. eth0) and a systemwide index
number.

• The actual addresses are stored in a link level version of
the sockaddr struct (sockaddr dl) with family code
AF LINK (Fig. 12.4).

7

Network Interfaces

The ifnet struct includes an if data struct that contains the
externally visible description of the interface.

Part of ifnet struct is also the if flags field that contains
flags that define the state of the interface (Table 12.2).

Some examples of such flags are:

IFF BROADCAST The interface has broadcast
capabilities.

IFF POINTOPOINT The interface is associated with a
point-to-point hardware link.

IFF UP Set when the interface is configured and ready
to transmit messages.

IFF SIMPLEX Set if the network hardware is unable to
receive packets that they send.

IFF PROMISC Set by network-monitoring programs to
receive all packets incoming on the interface
and not just packets addressed to the local
system.

IFF OACTIVE Indicates that the interface is busy doing
output.

8



Network Interfaces

• Interface addresses and flags are set with ioctl
requests.

• An address is assigned to an interface by the
SIOCSIFADDR ioctl request.

• One or more extra alias addresses can be assigned to
an interface by the SIOCAIFADDR ioctl request.

• In either case the protocol allocates an ifaddr struct and
adds it to the if addrhead list in the ifnet struct (Fig.
12.5).

• An address can be deleted with the SIOCDIFADDR
request.

• The SIOCSIFFLAGS request can be used to change
the state of an interface.

9

Network Interfaces

The ifnet struct also contains the head of a link level output
queue, if snd, and interface routines for calling the driver:

if output() Accepts a packet from the protocol level, adds
link level headers and queues the packet at the if snd
queue. If the IFF OACTIVE flag is not set, it calls
if start().

if start() Calls the driver specific start routine to initiate
transmission.

10



Socket-to-Protocol Interface

• The interface from the socket layer to the protocol layer
is through the pr usrreqs table.

• The entry points in the pr usrreqs table is listed in Table
12.3.

→ The first argument to the routines is always a pointer
to a socket struct.

→ An mbuf data chain is provided for output operations.
→ A pointer to a sockaddr struct is provided for

address-oriented requests.

Examples of routines are:

pru listen() Protocol level routine for the listen system call.
The protocol routine should make any state
changes needed to meet this request.

pru send() Each user request to send data is translated
into one or more calls to this routine.

pru rcvoob() This routine requests that any out-of-band
data now available be returned. It is no routine
at this level to receive normal data; They are
queued at the socket receive queue by
protocol routines activated from interrupt level.

11

Socket-to-protocol Control Routines

• The pr ctloutput() is called from the getsockopt and
setsockopt system calls to set or get protocol options.

→ The direction is determined by a parameter that can
be SOPT GET or SOPT SET.

• The pr ctlinput() routine passes control information
upward from one protocol module to another.

→ It takes two parameters: cmd and a sockaddr struct.
→ The cmd parameters takes the values shown in Fig.

12.4. Most of these values are from the Internet
Control Message Protocol (ICMP).

12



Interface Between Protocol and Network
Interface

• The lowest level in a protocol stack must interact with an
interface to send or receive packets.

• It is assumed that any routing decision is taken before a
packet is sent to the interface; In fact a routing decision
is needed to locate the interface.

• This leaves only two cases to be concerned with at the
interface level: Transmission of a packet and receipt of a
packet.

13

Network Interface Level

Packet transmission

• When an interface has been chosen, it is identified by
ifp, a pointer to an ifnet struct.

• The output routine is called by ifp->if output().

• The output routine takes four parameters: a pointer to
ifnet struct, a pointer to an mbuf chain, a pointer to a
sockaddr and pointer to a rtentry struct.

• The network destination address is passed to the output
routine in the sockaddr struct.

→ This destination address must be mapped to a link
layer address by the if output() routine.

→ The output routine must understand the address
formates for all protocols it supports to perform the
mapping.

→ The mapping may be a table lookup or (if a broadcast
network) it may require more involved techniques
such as the Address Resolution Protocol (ARP).

14



Network Interface Level

Packet Reception

• Network interfaces receive packets and enqueue the
packet at the appropriate network level input queue
based on information in the link layer protocol header
(Fig.12.6).

• The packet queues at the interface level use mbufs in
the same way as the higher levels, but they use a
special queue header defined by the ifqueue struct.

• Data received from the network are converted to a
chain of mbufs, typically by the hardware specific
interrupt handler, before being queued at the protocol
input queue.

Some macros are available for manipulating the mbuf
queues:

IF ENQUEUE(ifq, m) Place the packet m at the tail of
queue ifq.

IF PREPEND(ifq, m) Place the packet m at the head of
queue ifq.

IF DEQUEUE(ifq, m) Dequeue a packet from the queue
ifq to mbuf m.

Every queue is protected by a mutex to prevent that it is
manipulated by different processors at the same time.

15

Packet Reception Example
Every protocol that communicates with the interface level
must register it’s pr input() and input queue with the
network thread via the netisr register() routine.

For an Ethernet the following events will typically take place
when a packet is received:

• The hardware specific interrupt handler will allocate a
mbuf chain and copy data from the controller memory to
this mbuf chain.

• The hardware specific handler calls if input() (which is
ether input) with the mbuf chain as parameter.

• ether input calls ether demux() that determines which
protocol this packet is destined to, by decoding the type
code in the Ethernet packet header.

• ether demux() then strips off the Ethernet header and
calls netisr dispatch() to enqueue the packet at the
correct protocol.
→ When the packet is placed on the queue

schednetisr() is called to wake up the swi net
network thread that takes care of calling the protocol
input routine.

• In most cases netisr dispatch() will actually call the
protocol input routine itself instead of queuing the
packet.
→ The direct call method requires that the protocol

input routine is multithread safe (several instances of
it can run in parallel).

16



Routing

• The Networking system was designed for a
heterogeneous network environment with local-area
networks interconnected through routers (also called
gateways) (Fig. 12.7).

• All BSD systems have the potential to work as a router if
running on a machine with multiple network interfaces
and configured as a router.

A routing system have two major components (Fig. 12.8):

• Gathering and maintenance of route information.

→ Performed by a user mode routing daemon.

• Forwarding of packets

→ Selection of a network interface on which a packet
will be sent - performed by the kernel.

→ Uses a simple lookup that provides a first-hop route
for each outbound packet.

• Communication between the routing daemon and the
kernel is through a routing socket.

17

Kernel Routing

• The kernel routing mechanism implements a routing
table for looking up a first-hop route.

• The main components of the routing mechanism is the
rtentry data structure and a lookup algorithm.

• A destination is described by a sockaddr struct.

Routes can be classified in two categories:

• Host routes

→ The destination address must exactly match the
desired destination.

• Network routes

→ The destination address is paired with a mask.
→ The route matches any address that contains the

same bits as the destination in the positions
indicated by the mask.

• A special case is the wildcard route that has an empty
mask

→ Matches every destination and is used as default
route for destinations not otherwise known.

18



Kernel Routing Cont.

Another classification of routes is direct or indirect:

• A direct route leads directly to the destination.

→ The first hop of the path is the entire path.

• An indirect route specifies a router on a local network
that is the first-hop destination for the packet.

→ For an indirect route the network protocol header
specifies the address of the eventual destination, but
the link level header specifies the address of the
first-hop destination.

In FreeBSD the local-remote decision is made as part of
the routing lookup.

• If the best route is direct, then the destination is local
otherwise the route is indirect.

19

Kernel Routing Tables

• The kernel maintains one routing table for every
address family it supports.

• The kernel routing tables consist of routing entries
specified by the rtentry struct (Table 12.5).

• The rt flags field in the rtentry struct defines the type of
the route and some other attributes (Table 12.6).

Some flags are:

RTF HOST The route is for a specific host (if not set its a
network route)

RTF GATEWAY The route is to a gateway and the
destination address in the link layer header
should be set from the rt gateway field.

RTF REJECT Marks the destination of the route as being
unreachable causing an error when trying to
send.

RTF BLACKHOLE Similar to RTF REJECT but packets
are silently dropped.

RTF CLONING Indicates that the route is a generic route
that must be cloned and made more specific
before use.

When a route is added, created by cloning or deleted, the
link layer is called via the ifa rtrequest() entry in the ifaddr
struct for the interface.

20



Routing Lookup

• The routing table is organized as a radix search trie.

• The radix search algorithm uses a binary tree of nodes
beginning with a root node for each address family.

• The search keys are the 32 bit IP addresses (for the
Internet domain).

• The most significant bit position in the address is
numbered as bit 0.

• The internal nodes in the tree stores the bit position to
be tested in that node. If the lookup address have 1 in
the tested bit position the search continues in the right
subtree otherwise in the left subtree (Fig. 12.9)

• This lookup technique tests the minimum number of bits
required to distinguish between the keys that are stored
in the tree.

• Once a leaf node is reached it either contains the
lookup key or the key is missing in the tree.

• If the lookup key is missing, a modified algorithm is
used to backtrack up the tree checking each parent with
a mask until a match is found.

21

Routing-Table Interface

• A protocol calls the rtalloc() routine to look up a route in
the routing table.

• rtalloc() takes a pointer to a route struct as parameter
(Fig.12.10).

• A route struct has two entries:

→ A sockaddr struct that contains the destination
address.

→ A pointer to an rtentry struct that will be set to
reference the routing entry that is the best match for
the destination.

• The returned route is assumed to be held by the caller
until released by the RTFREE macro.

22



User-Level Routing Interface

• User mode programs use a raw socket in the routing
protocol family, AF ROUTE, to communicate with the
kernel routing layer.

• This socket operates like a normal datagram socket,
except that communication takes place between a user
process and the kernel.

• Messages to the kernel are requests to add, modify or
delete a route.

• Messages include a header with a message type
identifying the action (table 12.7).

• Requests to add or modify a route includes all the
information needed for the route including the route
flags (Table 12.6).

• The kernel sends a message in reply to a request.

• The kernel also sends messages to all open routing
sockets to inform about asynchronous state changes in
local interfaces.

23

User-Level Routing Polices

• Routing policies are determined by user mode routing
daemons such as routed.

• When routers talk to each other, they use routing
protocols such as RIP (Routing Information Protocol).

• Work stations configured as routers usually do not run
routing daemons, instead static routes are set up with
commands such as route.

24



Buffering and Congestion Control

• A fixed amount of memory is allocated at boot time to
the zone allocator to use for mbufs and mbuf clusters.

• More system memory can be requested for mbuf
clusters at later time if need arises.

• When a socket is created, the protocol reserves some
amount of buffer space for input and output queues.

→ These amounts defines the high watermarks.

• Incoming packets are always received unless memory
allocation fails.

• However, each network level protocol input queue has a
maximum queue length and if this length is exceeded
packets will be dropped.

• Limiting output queue lengths can be used on hosts that
routes from a fast network to a slow network.

→ To large queues in this case will cause unacceptable
delays.

25

Raw Sockets

• A raw socket allows privileged processes direct access
to protocols other than those normally used for
transport of user data.

→ The ping program is implemented using an ICMP
(Internet Control Message Protocol) socket.

→ The raw IP socket provide an external interface to IP
that can be used by usermode implementations of
transport protocols.

• Every raw socket has a protocol control block defined by
a rawcb struct (Fig. 12.11).

• All raw control blocks are kept on a linked list headed by
a global variable in the kernel.

• This list of rawcb blocks is searched by the raw input()
routine to locate a raw socket for a received packet.

• The raw input() routine match on protocol, family and
addresses to determine if a packet matches a raw
socket.

• Input packets are placed into the socket input queue for
all raw sockets that match the packet header.

• Each protocol calls the raw input() routine to handle
unassigned packets.

26



ARP

• The Address Resolution Protocol (ARP) is a link level
protocol that provides dynamic address translations for
networks that support broadcast or multicast
addressing.

• ARP maps a 32-bit IPv4 address to a 48-bit Ethernet
address.

• The interface to ARP is the arpresolve() routine that is
called by interface output routines.

• If the translation is in the ARP cache, the Ethernet
address is immediately returned otherwise an ARP
message is created that specifies the requested
Internet address.

• The ARP message is broadcast by the Ethernet
interface with the expectation that some host at the
network will know the translation - usually because it is
the intended recipient for the packet.

27

ARP Implementation

• The ARP cache is implemented as part of the routing
tree.
→ It is stored in an llinfo arp struct, pointed to by the

rt llinfo pointer in the rtentry struct.

The arpresolve() routine is called with the following
parameters:

struct ifnet *ifp The interface to use
struct rtentry *rt The route to the final destination
struct mbuf *msg The packet to send
struct sockaddr *dst The next hop IP address
u char *desten Return parameter - The looked up

Ethernet address

• If the route passed in the rt parameter already contains
a complete translation that has not timed out, the
Ethernet address is returned in the desten return
parameter.

• If the link level address is not known or has timed out,
the msg mbuf is queued in llinfo arp until the address
has been resolved.
→ An ARP broadcast message is sent requesting the

Ethernet address for the dst address.
→ Arpresolve() returns the EWOULDBLOCK error

code.

28



ARP Implementation Cont.

• After some time a response is received to the ARP
broadcast.

• The received packet is processed in the normal way by
the ether demux() routine.

• Because the Ethernet type code in the packet is
ETHERTYPE ARP, it is queued for the arpintr () routine.

arpintr()

• If the packet was an answer to the own broadcast, the
ARP cache is updated with the received Ethernet
address.

→ The queued msg is retransmitted with a call to the
interface output routine.

→ This time the resultant call to arpresolve() will return
without delay.

• If the packet was an ARP request from another host, a
response packet is sent.

• ARP normally times out entries in the cache after 20
minutes

29


