
Network File System - NFS

• NFS is a distributed file system (DFS) originally
implemented by Sun Microsystems.

• NFS is intended for file sharing in a local network with a
rather small number of computers.

• NFS is both a specification and an implementation of a
DFS. Today three versions exist of the specification -
version 2, version 3, and version 4.

• The first implementation of NFS version 2 was released
by Sun in 1984.

• An implementation of NFS version 3 was released by
Sun in 1992.

• The 4.4BSD implementation of NFS was based on the
protocol specification and not on the Sun
implementation.

• The FreeBSD NFS implementation is a direct
descendant of the 4.4 BSD code.

1

NFS Design Goals

• Protocol designed to be stateless.

• Designed to support UNIX filesystem semantics.

• Access controls follow the UNIX file system model.

• The protocol design is transport independent.

Some of the design decisions limits the areas where use of
NFS is appropriate:

• The design is based on a fast local network.

• The caching model assumes most files will not be
shared.

• The stateless protocol requires some loss of traditional
UNIX semantics.

2



NFS Structure

• NFS operates as a client-server application. The
communication is based on RPC:s.

• The NFS specification distinguishes between the
services provided by the mount mechanism and the
remote file access services.

• Two different protocols are specified - one protocol for
mounting and one protocol for performing file operations
- the NFS protocol.

• The RPC routines use a coding called XDR (External
Data Representation) to code data sent across the
network in a way that is independent of the memory
architecture (big-endian versus little-endian).

• Network data is sent using UDP in NFS v2. NFS v3 also
allows the use of TCP.

• The NFS protocol can run over any available stream- or
datagram-oriented protocol.

• A big problem for NFS running UDP on an Ethernet is
that the Ethernet data size limit of 1500 bytes forces the
packets to be fragmented at the IP level. If UDP is used
there is no error handling below the UDP level, thus if a
single fragment is lost all 8 KB have to be retransmitted.
This is the main reason why TCP is in fact a better
choice than UDP.

3

NFS Structure - Mount Protocol

• Each file on a server can be identified by a file handle,
returned to the client by the mount protocol.

• In the freeBSD implementation, the file handle is built
from a filesystem identifier, an inode number and a
generation number.

• The filesystem identifier and the inode provides an
unique identifier for the inode to be accessed.

• The generation number verifies that the inode still
references the same file as when it was first referenced.

• The use of the generation number ensures that the file
handle is time stable.

• A time stable identifier allows the system to remember a
file identity across transient errors and to detect
attempts to access deleted files.

4



The NFS Protocol

• The NFS Protocol is stateless.

• The server does not need any additional information
beyond that contained in the RPC to fulfill the request.

• In practice the server caches recently accessed file
data.

• The benefit of the stateless protocol is that there is no
need to do state recovery after a client or server crash.

• There are also some drawbacks to the stateless
protocol:

→ In a local filesystem an unlinked file will be
accessible until the last reference to it is closed - on
NFS it will disappear immediately.

→ For version 2 of the NFS protocol, all operations that
modify the file system must be written to disk before
the RPC can be acknowledged.

→ For a growing file an update may require three
synchronous disk writes: one for the inode, one for
the indirect block and one for the data block.

→ Version 3 of the NFS protocol eliminates some
synchronous writes by adding a new asynchronous
write RPC.

5

NFS Protocol - Buffering

• The NFS protocol do not specify the granularity of the
buffering that is used when files are written.

• Most NFS implementations buffer files in 8 Kbyte blocks.

• If 10 bytes in the middle of a block is modified most NFS
implementations will read the 8 Kbyte block, modify it
and write it back.

• The FreeBSD implementation keeps additional
information that describes which bytes in a buffer is
modified.

• If 10 bytes are written in the middle of a block, FreeBSD
will read the entire block from the server but only writes
back the modified bytes.

• This has two benefits:

→ Fewer data are sent over the network.
→ Non-overlapping modifications to a file are not lost.

6



FreeBSD NFS Implementation

The NFS implementation in FreeBSD was originally written
by Rick Macklem based on version 2 of the NFS
specification and later extended to include version 3 of the
specification.

The version 3 protocol provides the following:

• 64-bit file offsets and sizes.

• An access RPC

• An append option on the write RPC

• A defined way to create special files and fifos.

• The ability to batch writes into several asynchronous
RPC:s followed by a commit RPC.

Rick Macklem also made several nonstandard extensions
to NFS that became known as Not Quite NFS (NQNFS).

7

FreeBSD NFS Implementation

• The FreeBSD client and server implementations of NFS
are kernel resident.

• NFS interfaces to the network with sockets using the
internal kernel interface routines sosend() and
soreceive(). (Chapter 11 in the book).

• Less time critical operations such as mount, unmount
and determining which filesystems is allowed to be
exported, are handled by user-level daemons.

• The server side requires the portmap, mountd and
nfsd daemons to be running.

• Full functionality also requires the rpc.lockd and
rpc.statd daemons.

• The portmap daemon acts as a registration service for
RPC-based services.

8



NFS - Mountd

The interactions between a client and the server when
mounting an NFS file system is shown in figure 9.2

The mountd daemon handles two important functions:

1. On startup or after a HUP signal, mountd reads the
/etc/exports file and creates a list of hosts to which each
local filesystem may be exported. The list is passed into
the kernel and stored in the mount struct.

2. Client mount requests are directed to the mountd
daemon. After verifying that the client has permission to
mount the requested file system a file handle is
returned.

9

NFS - nfsd

• The nfsd master daemon forks off children that enters
the kernel using the nfs-specific nfssvc system call.

• The children remains kernel resident providing a
process context for the RPC daemons.

• Typical systems run four to six nfsd daemons.

• If nfsd is providing datagram service it creates a
datagram socket.

• If nfsd is providing stream service, connected stream
sockets will be passed in by the master nfsd daemon in
response to connection-oriented requests from clients.

• When a request arrives on a socket where is a callback
from the socket layer that invokes the nfsrv rcv() routine.

• The nfsrv rcv () call takes the message from the socket
receive queue and passes it to an available nfsd
daemon.

• The nfsd daemon verifies the sender and passes the
request to the appropriate local filesystem
implementation for processing.

• When the result returns from the filesystem it is
returned to the requesting client.

10



NFS - rpc.lockd and rpc.statd

• The rpc.lockd daemon manages locking requests for
remote files.

• The rpc.statd daemon cooperates with rpc.statd
daemons on other hosts to provide a status monitoring
service.

→ The daemon accepts requests from programs
running on the local host (typically rpc.lockd) to
monitor the status of a specified host.

→ If a monitored host crashes and is restarted the
rpc.statd daemon will inform the other daemons
about the crash when it is restarted.

→ By using the rpc.statd service, crashes will be
discovered and the locks held by a crashed host will
be released - otherwise such locks may be held
indefinitely.

11

NFS - nfsiod

• The purpose of the nfsiod daemons is to do
asynchronous read-aheads and write-behinds.

• If nfsiod is not used, each read or write of an NFS file
that cannot be serviced from the local cache must be
done in the context of the requesting process which
have to wait for the operation to complete.

• The client server interaction when nfsiod is used is
illustrated in fig. 9.3

12



Client-Server Interactions

• A local filesystem is not affected by network disruptions
because it will work unless where is a catastrophic
crash at the local machine in which case there is
nothing to do.

• By contrast, the client of a network file system must be
prepared to deal with the case that the client is still
running but the server becomes unreachable or
crashes.

• Each NFS mount point provides three alternatives for
dealing with server unavailability:

1. Hard mount. The client will continue to try to connect
the server indefinitely. this is the default behavior.

2. Soft mount. The client retries an RPC a specified
number of times an then returns a transient error. The
problem with this type of mount is that many programs
do not expect transient errors from I/O system calls.

3. Interruptible mount. The process will wait forever but it
sleeps at a level that can be interrupted by a signal.

13

RPC Transport Issues

• Since UDP does not guarantee datagram delivery, a
timer is started and if a timeout occurs the RPC request
is retransmitted.

• This may create problems for non-idempotent
operations if an RPC is retransmitted after it has been
received by the server.

• A recent-request cache is normally used at the server to
minimize the negative effect of duplicated RPC:s.

• The amount of time a client waits before resending an
RPC is called the round-trip-timeout (RTT).

• Because the round trip time is highly variable it is
difficult to find a good value for RTT.

• If an Ethernet is used the standard-sized 8-Kbyte
datagrams will be fragmented at the IP level into at least
six fragments that fits the Ethernet maximum packet
size of 1500 bytes.

• If a single of these fragments is lost the entire RPC
must be retransmitted.

• Almost all these problems will disappear if TCP is used
as a transport protocol.

• Since TCP provides a reliable data stream all
retransmissions will be done at TCP level.

• In NFS version 3 TCP is the first alternative. NFS
version 4 is also specified to use TCP.

14



Security Issues

• NFS versions 2 and 3 are not secure.

• There has been some attempts to improve the
authentication but since all data are sent in clear text,
the security is still limited.

• NFS export control is at the granularity of local
filesystems.

• Associated with each local file system mount point is a
list of the hosts to which the file system may be
exported.

• When NFS is running UDP this list is checked for every
RPC. If NFS is running TCP the check is made when a
connection is established.

• The user and group permissions are checked based on
the client UID and GID.

• This requires that the client and server use the same
UID and GID assignments.

• NFS have been extended to use Kerberos
authentication but it is not well defined and
interoperability cannot be guaranteed.

15

Performance aspects

• To improve performance client caches is used.

• A problem with client caches is that caches at different
clients may contain inconsistent data.

• There are three possible write strategies for the caches:

1. Synchronous writing. The write system call do not
return until the data is stored at the server.

2. Delayed write. The write system call returns
immediately. Writes to the server are delayed until the
cache is full.

3. Asynchronous write. The write to the server is started
immediately but the write system call returns before the
write completes.

• The FreeBSD NFS implementation uses asynchronous
writes while a file is open but synchronously waits for all
data to be written when the file is closed.

• The implementation will query the server about
attributes of a file at most once every 3 seconds.

16


