
History of FreeBSD

1979 3BSD Added virtual memory to UNIX/32V
1981 4.1BSD
1983 4.2BSD Final release from Berkeley DARPA

UNIX project
1986 4.3BSD
1988 4.3BSD Tahoe
1989 4.3BSD Net1 - First free release of UNIX, but

some files missing
1990 4.3BSD Reno
1991 4.3BSD Net2 - Free release with 6 files

missing
1992 NetBSD 0.8 - Added the missing files to

4.3BSD Net2
1993 FreeBSD 1.0 - Based on NetBSD but oriented

towards PC architecture
1993 4.4BSD Virtual memory code completely

rewritten
1994 4.4BSD-Lite
1994 NetBSD and FreeBSD rewritten to use

4.4BSD-Lite code after lawsuit was settled
1995 4.4BSD-Lite Release 2 - Final free release

from CSRG at Berkley
1995 OpenBSD Based on NetBSD - focus on

security

1

FreeBSD Kernel Facilities

The FreeBSD kernel provides four basic facilities:

1. Processes are composed of an address space with one
or more threads.

2. User interface to filesystem and devices.

3. Communication mechanisms as pipes, signals, sockets,
fifos.

4. System startup routines.

2



Kernel

The FreeBSD kernel is a monolithic kernel.

This is both for historic reasons and for performance
reasons.

A large part of the kernel is code that implements system
services (system calls). This code is organized as:

• Basic kernel facilities: timer, process and descriptor
management.

• Memory management

• Filesystems

• Terminal handling: pseudo terminals

• Interprocess communication: pipes sockets.

• Support for network communication.

3

Kernel

Most of the code in the kernel is machine independent.

Machine dependent software is isolated from the
mainstream code. Machine dependent code includes:

• Low-level startup code.

• Trap and fault handling.

• Low-level manipulation of process context.

• Configuration and initialization of hardware devices.

• Runtime support for I/O devices.

Almost all code is written in the C language, only 0.6
percent is written in assembly language.

4



Kernel Services

• The kernel operates in a separate address space that is
inaccessible to user processes.

• Only the kernel has direct access to system hardware.

• System calls are used to request services from the
kernel.

• All system calls appear synchronous to the applications:
The application do not run while the kernel performs the
actions associated with a system call.

• User applications and the kernel operate independently
of each other. The kernel do not store I/O control blocks
or other operating-system related data structures in the
application’s address space.

5

Process Management

FreeBSD implements standard UNIX system calls for
process management.

6



Signals

• Signals are delivered to a process as a result of certain
events.

• Signals in FreeBSD are modeled after hardware
interrupts.

• A process may specify a user level handler to which a
signal should be delivered.

• When a signal is generated it is blocked from further
occurrence while it is handled.

• Alternatively, a process may specify that a signal is to
be ignored.

• Some signals like SIGKILL and SIGSTOP cannot be
ignored.

7

Process Groups and Sessions

Related processes (such as all processes in a pipe)
belongs to the same process group.

Process groups are used to get signals delivered to all
related processes.

8



Memory Management

• Each process has its own address space.

• The address space is initially divided into three
segments: text, data and stack.

• The entire address space need not be resident for a
process to execute.

• The system implements a paged virtual memory system
that allows some pages to be stored on a disk memory.

• An interface called mmap() was specified for 4.2BSD to
allow processes to create new shared or private
segments.

• Due to lack of time mmap() was not included in 4.2BSD.

• An improved version of mmap() was planned for
4.3BSD but once again not included due to lack of time.

• In 4.4BSD the virtual memory system was completely
replaced and this was the first BSD system to include
mmap().

• The FreeBSD virtual memory is an extensively tuned
version of the 4.4BSD implementation.

9

Memory Management - Read and Write

Data related with read and write system calls are usually
copied into a kernel buffer.

Another possibility is to use remapping of the virtual
memory to move the buffer into the kernel.

FreeBSD always copies data for the following reasons:

• Often, the user data is not page aligned.

• If the page is moved by the virtual memory, the process
will no longer be able to reference it.

• If the process was allowed to keep a copy of the page, it
must be made copy-on-write. Unfortunately, the typical
process will immediately write into the buffer, forcing a
copy anyway if it was copy-on-write.

• When pages are remapped by the virtual memory, most
hardware requires that the hardware TLB is purged
selectively. This purge is often slow resulting in
remapping being slower than copying for block sizes
less than 4 to 8 Kbyte.

10



Descriptors and I/O

The basic model for UNIX I/O system is a sequence of
bytes that can be accessed sequentially or randomly.

UNIX processes uses descriptors to reference I/O streams.

Descriptors represent underlying objects supported by the
kernel. In FreeBSD four kinds of objects can be
represented by descriptors:

• A file is linear array of bytes with at least one name.

• A pipe is a linear array of bytes used as a unidirectional
communication channel to another process.

• A fifo is often referred to as a named pipe.

• A socket is an endpoint for a general communication
channel.

In systems before 4.2BSD, pipes were implemented in the
filesystem.

In 4.2BSD pipes were reimplemented using sockets.

For performance reasons FreeBSD do not use sockets to
implement pipes and fifos but use an implementation
optimized for local communication.

11

Devices

• Hardware devices are available as special files located
in the /dev directory.

• Most processes do not use these interfaces directly,
terminals and mounted filesystems are accessed
through the read and write system calls.

• Most network communication hardware do not have
special files in the filesystem. Here the raw-socket
interface is used instead.

12



Socket IPC

• The socket interface is a general interprocess and
network communications interface, first introduced in
4.2BSD.

• Unlike pipes, sockets can be set up between arbitrary
existing processes.

• Fifos are a kind of simplified sockets for local
communication only.

13

Scatter/Gather I/O

• Scatter/gather I/O was introduced in 4.2BSD.

• It uses the system calls readv and writev.

• This facility allows buffers in different parts of a process
address space to be written atomically without the need
to copy them into a single buffer.

14



Multiple filesystem support

• Networked computers made it desirable to support both
local and remote filesystems.

• If more than one filesystem is used a way is needed to
direct system calls to the correct filesystem
implementation.

• To make this possible a new data structure called vnode
(virtual node) was added to the system.

15

Devices and Autoconfiguration

• Historically the connection between special files and the
device driver was through a static array in the kernel
source code.

• More complex and increasingly diverse hardware made
a more flexible solution needed.

• Autoconfiguration is the process carried out to recognize
and enable the hardware devices present in the system.

• Originally autoconfiguration was done only at system
boot time.

• More dynamic device handling, especially in laptops,
has made it necessary to be able to perform
autoconfiguration operations at any time.

• FreeBSD uses a device-driver infrastructure called
newbus to manage devices.

16



Filesystem operations

• The mkdir and rmdir system calls were added in
4.2BSD.

• In older systems these operations were implemented as
a series of link and unlink operations.

• The rename system call was also introduced in 4.2BSD
to make file renaming atomic.

• Also the truncate system call that is used to decrease or
increase the size of a file was introduced in 4.2BSD.

• In addition to the usual UNIX file access controls
FreeBSD5.2 also implement ACL:s (Access Control
Lists)

17

Terminals

• Terminal access to mainframe and mini computers used
hardwired terminals.

• Today the normal command line interface to UNIX
systems uses terminal emulators such as xterm
running in an X-window.

• These terminal emulators use pseudo terminals.

• A pseudo terminal is built from a device pair termed the
master and slave devices.

• The slave device provides to a process an interface
identical to that historically provided by a hardware
device.

• Anything written on a master device appears as input
on the slave device and anything written on a slave
appears as input on the master device.

18



Terminals

• Terminals support the standard system read and write
operations as well as terminal-specific operations to
control input character editing and output formating.

• The character processing is handled by a line discipline.

• For command line oriented programs, the line discipline
is run in canonical mode.

• In this mode input data are delivered to the process a
line at the time.

• Screen editors usually run in noncanonical mode (raw
mode).

• In this mode every character is passed to the process
without interpretation.

• On output the terminal handler provides simple
formating services including:

→ Converting line-feed to carriage-return + line-feed.
→ Expanding tabs
→ Displaying echoed nongraphic ASCII characters as

two character sequences.

19

Interprocess Communication

• The socket interface is organized in communication
domains.

• The most important domains are:

→ The local domain.
→ The IPv4 domain
→ The IPv6 domain.

• Some of the communication domains provide access to
network protocols.

• These protocols are implemented as a separate
software layer logically below the socket layer in the
kernel.

• The kernel provides many ancillary services such as
buffer management, message routing, standardized
interfaces to protocols and interfaces to network
interface drivers.

20



Network Implementation

• The first protocol implemented in 4.2BSD was the
TCP/IP suite (IPv4).

• The reason for this choice was that an 4.1BSD based
implementation was publicly available from a
DARPA-sponsored project at BBN (Bolt, Beranek and
Newman).

• This implementation was probably the main reason for
the very widespread use of the TCP/IP protocols today.

21


