
Uniprocessor Scheduling

•Basic Concepts

•Scheduling Criteria

•Scheduling Algorithms

Three level scheduling

aka short-term

2

aka long-term aka medium-term

Types of Scheduling

3

Long- and Medium-Term Schedulers

Long-term scheduler

• Determines which programs are admitted to the system
(ie to become processes)

• requests can be denied if e.g. thrashing or overload

Medium-term scheduler

• decides when/which processes to suspend/resume

4

• decides when/which processes to suspend/resume

• Both control the degree of multiprogramming
– More processes, smaller percentage of time each process is
executed

Short-Term Scheduler (this is our focus here)

• Decides which process will be dispatched; invoked upon
– Interrupts, Operating system calls, Signals, ..

• Dispatch latency – time it takes for the dispatcher to
stop one process and start another running; the
dominating factors involve:

5

dominating factors involve:
– switching context

– selecting the new process to dispatch

CPU–I/O Burst Cycle

• Process execution consists of a
cycle of
– CPU execution and

– I/O wait.

• A process may be

– CPU-bound

– IO-bound

6

– IO-bound

Scheduling Criteria- Optimization goals

CPU utilization – keep CPU busy (when
there is work to do)

Throughput – # of processes that complete
per time unit

Response time – time between a request

7

Response time – time between a request
submission until the response (execution
+ waiting time)

Fairness - watch priorities, avoid
starvation, ...

Overhead e.g. context switching, computing
priorities, …

Decision Mode

Nonpreemptive

• Once a process is in the running state, it will
continue until it terminates or blocks itself
for I/O

Preemptive

• Currently running process may be interrupted

8

• Currently running process may be interrupted
and moved to the Ready state by the
operating system

• Allows for better interactive service since
any one process cannot monopolize the
processor for very long

Algorithms/methods for scheduling
– single processor

9

First-Come-First-Served
(FCFS)

0 5 10 15 20

A

B

C

10

• non-preemptive
• Favors CPU-bound processes
• A short process may have to
wait very long before it can
execute (convoy effect)

E

D

Round-Robin

0 5 10 15 20

A

B

C

11

C

D

E

• preemption based on clock (interrupts on time
slice or quantum -q- usually 10-100 msec)

• fairness: for n processes, each gets 1/n of the
CPU time in chunks of at most q time units

• Performance
– q large ⇒ FIFO
– q small ⇒ overhead can be high due to
context switches

Shortest Process First

0 5 10 15 20

A

B

C

D

12

• Non-preemptive

• Short process jumps ahead of
longer processes

• Avoid convoy effect

D

E

Preemptive SPF: Shortest Remaining Time First

0 5 10 15 20

A

B

C

13

• Preemptive (at arrival)
version of shortest process
next

D

E

On SPF Scheduling

• gives high throughput
• gives minimum
(optimal) sum (also
average) response
(waiting) time for a
given set of
processes

14

processes
– Proof (non-

preemptive): analyze
the summation giving
the waiting time

• Intuition:

But: possibility of starvation for

longer processes

On SPF Scheduling (cont)

• must estimate processing time (next cpu burst)
– Can be done automatically (exponential averaging)

– If estimated time for process (given by the user in a batch
system) not correct, the operating system may abort it

15

system) not correct, the operating system may abort it

Determining Length of Next CPU Burst

• Can be done by using the length of previous CPU bursts, using
exponential averaging.

burst CPU next the for value predicted 2.

burst CPU of lenght actual 1.

=

=

+τ 1n

th

n
nt

16

:Define 4.

10 , 3.

burst CPU next the for value predicted 2.

≤≤

=+

αα

τ 1n

() .t
nnn

ταατ −+== 11

On Exponential Averaging

• α =0

– τn+1 = τn
– history does not count, only initial estimation counts

• α =1

– τn+1 = tn
– Only the actual last CPU burst counts.

• If we expand the formula, we get:

17

• If we expand the formula, we get:
τn+1 = α tn+(1 - α) α tn -1 + …

+(1 - α)j α tn -i + …

+(1 - α)n τ0
• Since both α and (1 - α) are less than or equal to 1, each successive
term has less weight than its predecessor.

Prediction of the Length of the Next CPU
Burst

Priority Scheduling: General Rules

• Scheduler can choose a process of higher priority over
one of lower priority
– can be preemptive or non-preemptive

– can have multiple ready queues to represent multiple level of
priority

• Example Priority Scheduling: SPF, where priority is the
predicted next CPU burst time.

19

• Example Priority Scheduling: SPF, where priority is the
predicted next CPU burst time.

• Problem ≡ Starvation – low priority processes may never
execute.

• A solution ≡ Aging – as time progresses increase the
priority of the process.

Priority Scheduling Cont. : Multilevel Queue

• Ready queue is partitioned into separate
queues, eg

foreground (interactive)
background (batch)

• Each queue has its own scheduling
algorithm, eg

foreground – RR
background – FCFS

20

background – FCFS

• Scheduling must be done between the
queues.
– Fixed option eg., serve all from
foreground then from background.
Possible starvation.

– Alternative: Time slice – each queue gets
a fraction of CPU time to divide amongst
its processes, eg.
80% to foreground in RR
20% to background in FCFS

Multilevel Queue Scheduling

Multilevel Feedback Queue

• A process can move
between the various
queues; aging can be
implemented this way.

• scheduler parameters:

22

• scheduler parameters:
– number of queues

– scheduling algorithm for each
queue

– method to upgrade a process

– method to demote a process

– method to determine which
queue a process will enter
first

Multilevel Feedback Queues

23

Real-Time Scheduling

Real-Time Systems

• Tasks or processes attempt to interact with
outside-world events , which occur in “real time”;
process must be able to keep up, e.g.
– Control of laboratory experiments, Robotics, Air

traffic control, Drive-by-wire systems, Tele/Data-
communications, Military command and control
systems

• Correctness of the RT system depends not only on
the logical result of the computation but also on

25

• Correctness of the RT system depends not only on
the logical result of the computation but also on
the time at which the results are produced

i.e. Tasks or processes come with a deadline (for
starting or completion)

Requirements may be hard or soft

Periodic Real-TimeTasks:
Timing Diagram

26

E.g. Multimedia Process Scheduling

27A movie may consist of several files

E.g. Multimedia Process Scheduling (cont)

28

• Periodic processes displaying a movie

• Frame rates and processing requirements may be
different for each movie (or other process that
requires time guarantees)

Scheduling in Real-Time Systems

Schedulable real-time system

• Given
– m periodic events

– event i occurs within period Pi and requires Ci seconds

• Then the load can only be handled if

29

• Then the load can only be handled if

1

1
m

i

i i

C

P=

≤∑Utilization =

Scheduling with deadlines:
Earliest Deadline First

Set of tasks with deadlines is schedulable (can be executed s.t. no process
misses its deadline) iff EDF is a schedulable (feasible) sequence. (why?)

Example sequences:

30

Rate Monotonic Scheduling

• Assigns priorities to tasks on the basis of their periods

• Highest-priority task is the one with the shortest period

31

EDF or RMS? (1)

32

EDF or RMS? (2)

33

Another example of real-time scheduling with RMS and EDF

• RMS “accomodates” task set with less utilization

– (recall: for EDF that is up to 1)

EDF or RMS? (3)

1

1
m

i

i i

C

P=

≤∑ 0.7

34

– (recall: for EDF that is up to 1)

• RMS is often used in practice;
– main reason: stability is easier to meet with RMS; priorities
are static, hence, under transient period with deadline-misses,
critical tasks can be “saved” by being assigned higher (static)
priorities

– it is ok for combinations of hard and soft RT tasks

Multiprocessor Systems
Scheduling

Multiprocessors

Recall from overview:
• Memory
interconnection;
uniform/non-uniform
access

36

access

• Hyperthreading

Scheduling in Multiprocessors

Different degrees of parallelism
– Independent and Coarse-Grained Parallelism

• no or very limited synchronization
• can by supported on a multiprocessor with little change (and a
bit of salt ☺)

– Medium-Grained Parallelism

37

– Medium-Grained Parallelism
• collection of threads; usually interact frequently

– Fine-Grained Parallelism
• Highly parallel applications; specialized and fragmented area

Introducing idle time can improve
utilization and finishing times …

a b c

d e f g

2 1 1

20 20 10 10

38

P1

P2

P3

a

b

c

f

g

d

e

Introducing idle time can improve
utilization and finishing times …

a b c

d e f g

2 1 1

20 20 10 10

39

P1

P2

P3

a

b

c

f

g

d

e

g

e

Idle time

OS Design issues (1):
Who executes the OS/scheduler(s)?

• Master/slave architecture: Key kernel functions always run on a
particular processor

• Peer architecture: Operating system can execute on any processor
– Each processor does self-scheduling

– New issues for the operating system

40

– New issues for the operating system
• Make sure two processors do not choose the same process

Master-Slave multiprocessor OS

41

• Master/slave architecture: Key kernel functions always run
on a particular processor
– Master is responsible for scheduling; slave sends service
request to the master

– Disadvantages
• Failure of master brings down whole system

• Master can become a performance bottleneck

Bus

Peer Multiprocessor OS

Non-symmetric
:Each CPU
has its own
operating

Operating system can execute on any processor
Each processor does self-scheduling

operating system: Makes sure two processors do not choose the same process

42

operating
system

Bus

Symmetric
– SMP multiprocessor

model

Design issues 2:
Assignment of Processes to Processors

Per-processor ready-queues vs global ready-queue
• Permanently assign process to a processor;

– Less overhead
– A processor could be idle while another processor has a backlog

• Have a global ready queue and schedule to any available processor
– can become a bottleneck

43

– can become a bottleneck
– Task migration not cheap (cf. NUMA and scheduling)

Multiprocessor Scheduling:
Load sharing / Global ready queue

44

• (sharing time) note use of single data
structure for scheduling

Multiprocessor Scheduling
Load Sharing: another problem

45

• Problem with communication between two threads
– both belong to process A
– both running out of phase
– (relates to the idle-time-adds-efficiency example)

Design issues 3 (actually 2.5 ☺):
Multiprogramming on processors?

Experience shows:
– Threads of the same process running on separate processors
(to the extend of dedicating a processor to a thread) yields
dramatic gains in performance

– Allocating processors to threads ~ allocating pages to
processes (can use working set model?)

46

processes (can use working set model?)

– Specific scheduling discipline is less important with more than
on processor; the decision of “distributing” tasks is more
important

Multiprocessor Scheduling:
per processor or per-partition RQ

47

• (sharing space) - multiple threads of same
process at same time across multiple CPUs

similar: Gang Scheduling
1. Groups of related threads scheduled as a unit (a gang)
2. All members of gang run simultaneously

• on different timeshared CPUs
3. All gang members start and end time slices together

48

Gang Scheduling: another option

49

Multiprocessor Thread Scheduling
Dynamic Scheduling

• Number of threads in a process are altered dynamically by the
application

• Programs (through thread libraries) give info to OS to manage
parallelism
– OS adjusts the load to improve use

• Or os gives info to run-time system about available processors, to
adjust # of threads (recall thread pools?).

• i.e dynamic vesion of partitioning:

50

• i.e dynamic vesion of partitioning:

Multithreaded Multicore System

Solution by architecture: hyperthreading
Needs OS awareness though to get the
corresponding efficiency

Thread Scheduling

• Many-to-one and many-to-many models, thread
library schedules user-level threads to run on
LWP
– Known as process-contention scope (PCS) since
scheduling competition is within the process

• Kernel thread scheduled onto available CPU is
system-contention scope (SCS) – competition
among all threads in system

• E.g. Pthreads scheduling API allows specifying
either PCS or SCS during thread creation

Summary: Multiprocessor Scheduling

Load sharing: processors/threads not assigned to particular
processors

• load is distributed evenly across the processors;
• needs shared queues; may be a bottleneck

Gang scheduling: Assigns threads to particular processors
(simultaneous scheduling of threads that make up a process)

53

Gang scheduling: Assigns threads to particular processors
(simultaneous scheduling of threads that make up a process)

• Useful where performance severely degrades when any part of the
application is not running (due to synchronization)

• Extreme version: Dedicated processor assignment (no
multiprogramming of processors)

Operating System Examples

• Solaris scheduling

• Windows XP scheduling

• Linux scheduling

Solaris Scheduling

Kernel
preemptible
by RT tasks in
multiprocessors
(unless interrupts (unless interrupts
disabled)

A la Multilevel
Queues – with
feedback, where
applicable

Solaris Dispatch Table
interactive/timesharing threads

Windows XP Priorities

Also multilevel priority queue scheduling

Priority classes

R
el

at
iv

e
P

ri
o
ri

ty

R
el

at
iv

e
P

ri
o
ri

ty

Linux Scheduling

• Two priority ranges: time-sharing and
real-time

• One queue per processor/core

List of Tasks/readyQueue Indexed According
to Priorities

one pair per core/processor

