

cPu O

~€— CPU scheduler aka short-term

Arriving
jek Fipiit O00O0O0 AN
i queue N—
Main N
L1 lO|O[O[O] | > Memory < >

N

L

Admission aka long-term Memory gka mediB;ﬁi-(term

scheduler scheduler

I
ocked/\
&- e — el
e ‘Madlmn-teml |

ehedulng

\
~7

Figure 9.1 Scheduling and Process State Transitions Figure 9.2 Levels of Scheduling

Long-term scheduler

Determines which programs are admitted to the system
(ie to become processes)

requests can be denied if e.g. thrashing or overload
Medium-term scheduler
- decides when/which processes to suspend/resume

Both control the degree of multiprogramming

- More processes, smaller percentage of time each process is
executed

Decides which process will be dispatched, invoked upon
- Interrupts, Operating system calls, Signals, ..

Dispatch latency - time it takes for the dispatcher to
stop one process and start another running; the
dominating factors involve:

- switching context

- selecting the new process to dispatch

- Process execution consists of a
cycle of

- CPU execution and
- I/0 wait.
* A process may be
- CPU-bound
- I0-bound

load store
add store
read from file

weail for I/0

store increment
index
wrile to file

- CPLU burst

= 1A burst

wait for 'O

load store
add store
read from file

wait for I/0

} CPU burst

’r A0 burst

= CPL burst

F /0 burst

CPU utilization - keep CPU busy (when —
there is work to do) @ﬁ } ey
forgetting

I"a Throughput - # of processes that complete

1 er time unit
S o> P

Response time - tfime between a request
submission until the response (execution
+ waiting time)

Fairness - watch priorities, avoid

IDISCRIMINATION I
iyoge starvation, ...

Overhead e.g. context switching, computing
priorities, ...

I &AM & YICTIH OF
My owHd APHIRIETEATIOH

Nonpreemptive

Once a process is in the running state, it will
continue until it ferminates or blocks itself
for I/0

Preemptive

Currently running process may be interrupted
and moved to the Ready state by the
operating system

Allows for better interactive service since

any one process cannot monopolize the
processor for very long

2o aw »

Process

Arrival Time

Service Time

A

0

3

B
C
D
E

2
4
6
8

b
4
5
2

hon-preemptive
Favors CPU-bound processes

A short process may have to
wait very long before it can
execute (convoy effect)

0

A

B

C

D

E

Process Arnival Time | Service Time

A 0 3
B 2 b
C 4 4
D b 5
E B 2

preemption based on clock (interrupts on time
slice or guantum -q- usually 10-100 msec)

fairness: for nprocesses, each gets 1/ of the
CPU time in chunks of at most ¢ time units

Performance
- glarge = FIFO

- g small = overhead can be high due to
context switches "

0 10 15 20
| [| N T I O O I I
A
B |
C
D
E
Process | Arrival Time | Service Time Non-pr'eemp’rive
A 0 3 Short process jumps ahead of
B 2 6 longer processes
C 4 4 Avoid convoy effect
D 6 5
B 5 2

12

A
B
C
D
E
Process Arrival Time | Service Time
L 0 3
E i b
C 4 4
D f 5
[8 p

Preemptive (at arrival)
version of shortest process
next

13

* gives high throughput
° glves minimum Cost of

(optimal) sum (also ~ °*

average) response
(waiting) time for a
given set of
processes

- Proof (non-
preemptive): analyze
the summation giving cost of
the waiting time Delay

- Intuition: == =m=—==p

Shortest Job First

Shortest Job First

1

3
Time
Project | Duration Cost of
Delay
Longest Job First 1 1 3
2 3 3
3 10 3

B oelay cost

1

Time

From “The Principles of Product Development Flow,” by Donald G. Reinertsen.

Celeritas Publishing: 2009, Copyright 2009, Donald G. Reinertsen

But: possibility of starvation for

longer processes

14

* must estimate processing time (next cpu burst)
- Can be done automatically (exponential averaging)

- If estimated time for process (given by the user in a batch
system) not correct, the operating system may abort it

15

Can be done by using the length of previous CPU bursts, using
exponential averaging.

1.
2.
3.
4.

t. =actual lenght of n"CPU burst

., =predicted value for the next CPU burst
a,0<a<1

7, =ot,+(-a),.

16

o =0

~ Tt = Tn

- history does not count, only initial estimation counts
o =1

T T T Ty

- Only the actual last CPU burst counts.

If we expand the formula, we get:
T=ot+(Z-a)at, ,+..
Hl-a)at, +..
-)1
Since both o and (1 - o) are less than or equal to 1, each successive
term has less weight than its predecessor.

17

12 /--i

T 10 /
v

8 /]

6 /
4
._./
4
2
time —
PU burst (t) 6 4 6 4 13 13 13

"guess” (t) 10 8 6 6 5 9 11 12

Scheduler can choose a process of higher priority over

one of lower priority

- can be preemptive or non-preemptive

- can have multiple ready queues to represent multiple level of
priority

Example Priority Scheduling: SPF, where priority is the

predicted next CPU burst time.

* Problem = Starvation - low priority processes may never
execute.

A solution = Aging - as time progresses increase the
priority of the process.

19

Admit =

RQO

RQO1

RQn

Dispatch

Preemption

Ready queue is partitioned into separate
Release queueS, eg

foreground (interactive)

background (batch)
Each queue has its own scheduling
algorithm, eg

foreground - RR

background - FCFS
Scheduling must be done between the
queues.

- Fixed option eg., serve all from
foreground then from background.
Possible starvation.

Event
OCCurs

Event Walt

- Alfernative: Time slice - each queue gets
a fraction of CPU time to divide amongst

Blocked Queue

Figure 94 Priority Queuing

its processes, eg.
80% to foreground in RR
20% to background in FCFS 0

highest priority

batch processes

—

student processes

lowest priority

* A process can move

i il el between the various
........... [.......----.—P‘mcemr .
queues; aging can be

implemented this way.

..

RO1 Release

...... il] * scheduler parameters:
- number of queues
S | - scheduling algorithm for each

s queue
E - method to upgrade a process
' RQn Release
feeeep - method to demote a process
—

- method to determine which
queue a process will enter
first

22
Figure 9.10 Feedback Scheduling

>
quantum =8

Pﬁ >
quantum = 16
Pﬁ >
FCFS

23

Tasks or processes attempt to interact with
outside-world events , which occur in "real time";
process must be able to keep up, e.g.

- Control of laboratory experiments, Robotics, Air
traffic control, Drive-by-wire systems, Tele/Data-
communications, Military command and control
systems

Correctness of the RT system depends not only on
the logical result of the computation but also on
the time at which the results are produced

i.e. Tasks or processes come with a deadline (for
starting or completion)

Requirements may be hard or soft

-4 Cycle 1 e Cycle 2 -

P Processing Idle Processing

i} - Time
task P execuotion time

.] task P perind T- =8

Figure 10.7 Periodic Task Timing Diagram

26

Video

English audio

French audio

German audio

English subtitles

Dutch subtitles

Fast forward

Fast backward

A movie may consist of several files

Frame

1 2 3 4 5 6 7 8
BT TR IEEIREIRL IR
L r I iR ! L ! d L f L. L

L { 1] 1 1 +]

e — =——*FF —

i 1 : B 1 A L 1 - |

de T T =
2] " " .

4 1 1 1 1 1 L\} — l—q { — - — : 1'% I |
| '.vﬂ‘w"_*—“_"d—“‘d- = = =t ==

| Hello, Bob I Hello, Alice | Nice day I Sure is |How are youl Great And you I Good |
Dag, Bob Dag, Alice Mooie dag Jazeker Hoe gaat het Prima En jij Goed

27

Starting moment Deadline
for A1, B1, C1 for A1 Deadline for B1

Deadline for C1

v v /

Al A1 A2 A3 A4 A5
B B1 B2 B3 B4
CIET o5 3

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Time (msec) —>

* Periodic processes displaying a movie

* Frame rates and processing requirements may be
different for each movie (or other process that

requires time guarantees)
28

Schedulable real-time system
* Given
- mperiodic events
- event 7/occurs within period P, and requires C; seconds

* Then the load can only be handled if

= C.
Utilization = Z — S
1 B

29

Set of tasks with deadlines is schedulable (can be executed s.t. no process
misses its deadline) iff EDF is a schedulable (feasible) sequence. (why?)

Example sequences:

Bl Bl
leadd e dleadline

Al A A Ad AS
dead line deadline deadline deadline deadline
Arrival times, executlon | Al I A2 Al | A | l AS |
| B1 | | B2 1

tlmes, and deadlines

-
O 10 20 30 40 50 o0 70 8O0 99 100 Time(ms)

Fixed-priority scheduling: A e Az e[A3 B2 Aa] B2 [AS | -
A has priority I L I L I T
1 1 4 A5, B2
{mis=ed)
Fixed-priority scheduling; | B1 | A2 [A5] B2 | [A5]
-
s E L&k _E
1 1 4 .B2
(mnissecd) (missec)
Earillest deadline scheduling (AT s AT B1 [A3 e Aa] B2 | A5} g

S S £ FL:f © =&

Assigns priorities to tasks on the basis of their periods
Highest-priority task is the one with the shortest period

High Highest rate and
highest priority task .
H_$-f
-
E
&
2 -
E &
[- EB
-
f-EB‘\ Lowest rate and
e lowest priority task
-
Low
Rate (Hz)

31

Figure 10.8 A Task Set with RMS [WARRY1 |

A2

A3

A4

A2

A3

A5

B4

A4

N

9
| NEWA

A2

A3

A5

Time (msec) —>»

N b
0]

A5

130

Al At | A2 A3 | A4 A5 |
B| B1 B2 B3 B4
RMS| Af B1 A2 B2 ||Failed
EDF| Af Bl [CHY A2 B2 A3 [C2] B3 A4 [C3] A5 B4
O 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Time (msec) —>

Another example of real-time scheduling with RMS and EDF

33

- RMS "accomodates” task set with less utilization

I
la> |@
IN

- (recall: for EDF that is up to 1)

- RMS is often used in practice;

- main reason: stability is easier To meet with RMS; priorities
are static, hence, under transient period with deadline-misses,
critical tasks can be "saved” by being assigned higher (static)
priorities

- it is ok for combinations of hard and soft RT tasks

34

Recall from overview:

Memory
iInterconnection;

uniform/non-uniform

access

Hyperthreading

logical | | logical
CPU CPU

physical
CPU

system bus

logical
CPU

logical
CPU

physical
CPU

)

c

na

c

Inteconnection netw ok

Memory

Memory

Shared network

M LA

R

Sharec network

Messrga-passing network

M LA

36

Different degrees of parallelism

- Independent and Coarse-Grained Parallelism
* no or very limited synchronization

- can by supported on a multiprocessor with little change (and a
bit of salt ©)

- Medium-Grained Parallelism
- collection of threads, usually interact frequently

- Fine-Grained Parallelism
- Highly parallel applications; specialized and fragmented area

37

N
7

v

\'

V

\'4

A\

38

Vv

P] > >
b f
P2 > > € >
T
C g g
P3 >- I >

Idle time ¢ 39

* Master/slave architecture: Key kernel functions always run on a
particular processor

- Peer architecture: Operating system can execute on any processor
- Each processor does self-scheduling

- New issues for the operating system
* Make sure two processors do not choose the same process

40

CPU 1 CPU 2 CPU 3 CPU 4 Memory /O

Master Slave Slave Slave - User
runs runs user runs user runs user processes
oS processes processes processes 0S

*
Bus

Master/slave architecture: Key kernel functions always run
on a particular processor
- Master is responsible for scheduling; slave sends service
request to the master
- Disadvantages
Failure of master brings down whole system
Master can become a performance bottleneck 41

Operating system can execute on any processor
Each processor does self-scheduling
operating system: Makes sure two processors do not choose the same process

Non-symmetric

CPU 1 CPU 2 CPU 3 CPU 4 Memory /O .Each CPU
1 2 i
Has Has Has Has i | DS has Its own
private private private private 3 | 4 operating
Data | Data
OS OS OS oS 55 code system
Bus
|
X :
CPU 1 CPU 2 CPU 3 CPU 4 Memory 1/O SymmeTr'IC
Runs Runs Runs Runs - SMP mUITIpr‘OCCSSOF‘
users and users and users and users and model
shared 0S| |sharedOS| [shared OS| |shared OS oS o

\ \ 42
Locks

Per-processor ready-queues vs global ready-queue

- Permanently assign process to a processor;

- Less overhead

- A processor could be idle while another processor has a backlog
* Have a global ready queue and schedule to any available processor

- can become a bottleneck
- Task migration not cheap (cf. NUMA and scheduling)

CPU CPU
\ o
lfast s % jfast access
Sg
\

memory memory

computer

43

of[1[]|2]]3 1]112]]3
AlE IRk /CPU Alls]||6]]7
8| [9] [to] [1 CPL{4/8 9] [to] [11
goes idle
12| |13] |14] |15 12| |13] (14| |15
Priority Priority
1 T®e0 1 4+®0O
6] +O® 6l +O®
5. 1+® 5. 1+®
4 4
3 1600 3 1000
2l TO® 2l 1+O®
1 1
o TOO® o TOO®

(@) (b)

* (sharing time) note use of single data

structure for scheduling

CPU 12
goes idle

o |1 2113
Al|5]|6]|]|7
8119 (10] |11
Bl 13| [14| |15
Priority
7 —+©
6|__T0@®
5| 1®
4
317000
o[+O®
1
o TOWO

44

Thread A, running

A

'3 Gy
CPUDO Ao B0 iﬂ\0 B0)ﬂ\0 B0

E Fiequcfast 1 E equest ;2 ' E E

: : eply 1 : Reply 2 : !
CPU 1 B1 :“-"\1 B1 A1 B1 ;ﬁ\1
Time 0 100 200 300 400 500 600

* Problem with communication between two threads
- both belong to process A
- both running out of phase
- (relates to the idle-time-adds-efficiency examplef

Experience shows:

- Threads of the same process running on separate processors
(to the extend of dedicating a processor to a thread) yields
dramatic gains in performance

- Allocating processors to threads ~ allocating pages to
processes (can use working set model?)

- Specific scheduling discipline is less important with more than
on processor; the decision of "distributing” tasks is more
important

46

8-CPUpartition\:-------_--------_--__l e
doll1ll2]13llallslls]]7

s | 9] |10]|11]:]12] |13] |14]i|15

6-CPU partition —.1| 16| |17 [18]i[19 {20 |21] |22]: 23|

(24| |25] |26]i|27] | 28| |29 30 11| 31 |
/ ™~ 12-CPU partition

Unassighed CPU

* (sharing space) - multiple threads of same
process at same time across multiple CPUs

47

1.
2.

3.

Groups of related threads scheduled as a unit (a gang)
All members of gang run simultaneously

on different timeshared CPUs
All gang members start and end time slices together

CPU

Time 3
slot

48

Uniform Dlivislon Divisilon by Welghts

Group 1 Group 2 Group 1 Group 2
PE1 PE1
PE2 idle PE2 Idle
PE3 ldle PE3 Idle
PE4 ldle PE4 Idle
Time 1/2 /2 4/5 /5
3735% Waste 15% Waste

Figure 10.2 Example of Scheduling Groups with Four and One Threads [FEIT90]

* Number of threads in a process are altered dynamically by the
application

* Programs (through thread libraries) give info to OS to manage
parallelism

- OS adjusts the load to improve use

- Or os gives info to run-time system about available processors, to
adjust # of threads (recall thread pools?).

- i.e dynamic vesion of partitioning:

8-CPU parfition~, ,ossresacomsemmomsac. e e D AT R
\’ 0 1 2([3]{4]]15]]|6 7| _—4-CPU partition

89| [10][11]n12] [13]|14[:[15
6-CPU partition ~—.1| 1 7| [18]:]19] {20] |21] [22]:i[23
24| |25] |26]i[27[(28] |29 |30]:i[31

/ ™~ 12-CPU partition

Unassighed CPU

C | compute cycle M |memory stall cycle

il C M C M C M G M

time

Solution by architecture: hyperthreading
Needs OS awareness though to get the
corresponding efficiency

* Many-to-one and many-to-many models, thread
library schedules user-level threads to run on
LWP

- Known as process-contention scope (PCS) since
scheduling competition is within the process

Kernel thread scheduled onto available CPU is
system-contention scope (SCS) - competition
among all threads in system

E.g. Pthreads scheduling APT allows specifying
either PCS or SCS during thread creation

Load sharing: processors/threads not assigned to particular
processors

load is distributed evenly across the processors;
needs shared queues; may be a bottleneck

Gang scheduling: Assigns threads to particular processors
(simultaneous scheduling of threads that make up a process)

Useful where performance severely degrades when any part of the
application is not running (due to synchronization)

Extreme version: Dedicated processor assignment (no
multiprogramming of processors)

53

- Solaris scheduling
* Windows XP scheduling
* Linux scheduling

A la Multilevel
Queues - with

global
priority

A
highest

feedback, where

applicable

b 169

160
159

100
99

60
59

lowest ¥

o

scheduling

interrupt threads

realtime (RT) threads

system (SYS) threads

fair share (FSS) threads
fixed priority (FX) threads
timeshare (TS) threads

interactive (IA) threads

order

F

first

b

r last

Kernel
preemptible

by RT tasks in
multiprocessors

(unless interrupts
disabled)

time return
time guantum from
priority quantum expired sleep
0 200 0 50
5 200 0 50
10 160 0 51
15 160 5 51
20 120 10 52
25 120 15 52
30 80 20 53
35 80 25 54
40 40 30 55
45 40 35 56
50 40 40 58
55 40 45 58
59 20 49 59

Relative Priority

Priority classes

Also multilevel priority queue scheduling

;_eal- high above e below idle
ime normal normal priority
time-critical 31 | 15 1 i a5
highest 26 15 12 10 8 6
above normal 5 14 11 9 i 5
normal 24 13 10 8 6 4
below normal 23 = 9 i = 3
lowest 22 11 8 6 4 2
idle 16 1 1 1 1 1

 Two priority ranges: time-sharing and
real-time
* One queue per processor/core

numeric relative time
priority priority quantum
0 highest
¢ real-time
: tasks
99
100
: other
. tasks
140 lowest 10 ms

one pair per core/processor

active o \expired
array A array

priority task lists priority task lists
0] O0—O 0] O—0—0
M o—o—o0f N [1] o

] L]

[140] O [140] o—O

