
Uniprocessor Scheduling

•Basic Concepts

•Scheduling Criteria 

•Scheduling Algorithms



Three level scheduling

aka short-term
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aka long-term aka medium-term



Types of Scheduling

3



Long- and Medium-Term Schedulers

Long-term scheduler

• Determines which programs are admitted to the system 
(ie to become processes) 

• requests can be denied if e.g. thrashing or overload

Medium-term scheduler

• decides when/which processes to suspend/resume
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• decides when/which processes to suspend/resume

• Both control the degree of multiprogramming
– More processes, smaller percentage of time each process is 
executed



Short-Term Scheduler (this is our focus here)

• Decides which process will be dispatched; invoked upon
– Interrupts, Operating system calls, Signals, ..

• Dispatch latency – time it takes for the dispatcher to 
stop one process and start another running; the 
dominating factors involve:
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dominating factors involve:
– switching context

– selecting the new process to dispatch



CPU–I/O Burst Cycle

• Process execution consists of a 
cycle of
– CPU execution and 

– I/O wait.

• A process may be 

– CPU-bound 

– IO-bound
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– IO-bound



Scheduling Criteria- Optimization goals

CPU utilization – keep CPU busy (when 
there is work to do)

Throughput – # of processes that complete 
per time unit

Response time – time between a request 
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Response time – time between a request 
submission until the response (execution 
+ waiting time)

Fairness - watch priorities, avoid 
starvation, ...

Overhead e.g. context switching, computing 
priorities, …



Decision Mode

Nonpreemptive

• Once a process is in the running state, it will 
continue until it terminates or blocks itself 
for I/O

Preemptive

• Currently running process may be interrupted
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• Currently running process may be interrupted
and moved to the Ready state by the 
operating system

• Allows for better interactive service since 
any one process cannot monopolize the 
processor for very long



Algorithms/methods for scheduling 
– single processor
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First-Come-First-Served
(FCFS)
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• non-preemptive
• Favors CPU-bound processes 
• A short process may have to 
wait very long before it can 
execute (convoy effect)

E

D



Round-Robin
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C

D

E

• preemption based on clock (interrupts on time 
slice or quantum -q- usually 10-100 msec)

• fairness: for n processes, each gets 1/n of the 
CPU time in chunks of at most q time units 

• Performance
– q large ⇒ FIFO
– q small ⇒ overhead can be high due to 
context switches



Shortest Process First

0 5 10 15 20

A

B

C

D

12

• Non-preemptive

• Short process jumps ahead of 
longer processes

• Avoid convoy effect

D

E



Preemptive SPF: Shortest Remaining Time First
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• Preemptive (at arrival) 
version of shortest process 
next

D

E



On SPF Scheduling

• gives high throughput
• gives minimum
(optimal) sum (also 
average) response
(waiting)  time for a 
given set of 
processes 
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processes 
– Proof (non-

preemptive): analyze 
the summation giving 
the waiting time

• Intuition:

But: possibility of starvation for 

longer processes 



On SPF Scheduling (cont)

• must estimate processing time (next cpu burst)
– Can be done automatically (exponential averaging)

– If estimated time for process (given by the user in a batch 
system) not correct, the operating system may abort it
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system) not correct, the operating system may abort it



Determining Length of Next CPU Burst

• Can be done by using the length of previous CPU bursts, using 
exponential averaging.
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On Exponential Averaging

• α =0

– τn+1 = τn
– history does not count, only initial estimation counts

• α =1

– τn+1 = tn
– Only the actual last CPU burst counts.

• If we expand the formula, we get:
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• If we expand the formula, we get:
τn+1 = α tn+(1 - α) α tn -1 + …

+(1 - α )j α tn -i + …

+(1 - α )n τ0
• Since both α and (1 - α) are less than or equal to 1, each successive 
term has less weight than its predecessor.



Prediction of the Length of the Next CPU 
Burst



Priority Scheduling: General Rules

• Scheduler can choose a process of higher priority over 
one of lower priority
– can be preemptive or non-preemptive

– can have multiple ready queues to represent multiple level of 
priority

• Example Priority Scheduling: SPF, where priority is the 
predicted next CPU burst time.
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• Example Priority Scheduling: SPF, where priority is the 
predicted next CPU burst time.

• Problem ≡ Starvation – low priority processes may never 
execute.

• A solution ≡ Aging – as time progresses increase the 
priority of the process.



Priority Scheduling Cont. : Multilevel Queue

• Ready queue is partitioned into separate 
queues, eg

foreground (interactive)
background (batch)

• Each queue has its own scheduling 
algorithm, eg

foreground – RR
background – FCFS
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background – FCFS

• Scheduling must be done between the 
queues.
– Fixed option eg., serve all from 
foreground then from background.  
Possible starvation.

– Alternative: Time slice – each queue gets 
a fraction of CPU time to divide amongst 
its processes, eg.
80% to foreground in RR
20% to background in FCFS



Multilevel Queue Scheduling



Multilevel Feedback Queue

• A process can move 
between the various 
queues; aging can be 
implemented this way.

• scheduler parameters:
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• scheduler parameters:
– number of queues

– scheduling algorithm for each 
queue

– method to upgrade a process

– method to demote a process

– method to determine which 
queue a process will enter 
first 



Multilevel Feedback Queues
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Real-Time Scheduling



Real-Time Systems

• Tasks or processes attempt to interact with 
outside-world events , which occur in “real time”; 
process must be able to keep up, e.g.
– Control of laboratory experiments, Robotics, Air 

traffic control, Drive-by-wire systems, Tele/Data-
communications, Military command and control 
systems

• Correctness of the RT system depends not only on 
the logical result of the computation but also on 
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• Correctness of the RT system depends not only on 
the logical result of the computation but also on 
the time at which the results are produced

i.e. Tasks or processes come with a deadline (for 
starting or completion)

Requirements may be hard or soft



Periodic Real-TimeTasks:
Timing Diagram
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E.g. Multimedia Process Scheduling

27A movie may consist of several files



E.g. Multimedia Process Scheduling (cont)
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• Periodic processes displaying a movie

• Frame rates and processing requirements may be 
different for each movie (or other process that 
requires time guarantees)



Scheduling in Real-Time Systems

Schedulable real-time system

• Given
– m periodic events

– event i occurs within period Pi and requires Ci seconds

• Then the load can only be handled if
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• Then the load can only be handled if
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Scheduling with deadlines:
Earliest Deadline First

Set of tasks with deadlines is schedulable (can be executed s.t. no process 
misses its deadline) iff EDF is  a schedulable (feasible) sequence.  (why?) 

Example sequences:
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Rate Monotonic Scheduling

• Assigns priorities to tasks on the basis of their periods

• Highest-priority task is the one with the shortest period
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EDF or RMS? (1)
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EDF or RMS? (2)
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Another example of real-time scheduling with RMS and EDF



• RMS “accomodates” task set with less utilization 

– (recall: for EDF that is up to 1)

EDF or RMS? (3)
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– (recall: for EDF that is up to 1)

• RMS is often used in practice; 
– main reason: stability is easier to meet with RMS; priorities 
are static, hence, under transient period with deadline-misses, 
critical tasks can be “saved” by being assigned higher (static) 
priorities

– it is ok for combinations of hard and soft RT tasks



Multiprocessor Systems
Scheduling



Multiprocessors

Recall from overview:
• Memory 
interconnection; 
uniform/non-uniform 
access
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access

• Hyperthreading



Scheduling in Multiprocessors

Different degrees of parallelism
– Independent and Coarse-Grained Parallelism

• no or very limited synchronization
• can by supported on a multiprocessor with little change (and a 
bit of salt ☺)

– Medium-Grained Parallelism
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– Medium-Grained Parallelism
• collection of threads; usually  interact frequently

– Fine-Grained Parallelism
• Highly parallel applications; specialized and fragmented area



Introducing idle time can improve
utilization and finishing times …
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Introducing idle time can improve
utilization and finishing times …
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OS Design issues (1):
Who executes the OS/scheduler(s)?

• Master/slave architecture: Key kernel functions always run on a 
particular processor

• Peer architecture: Operating system can execute on any processor
– Each processor does self-scheduling

– New issues for the operating system
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– New issues for the operating system
• Make sure two processors do not choose the same process



Master-Slave multiprocessor OS
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• Master/slave architecture: Key kernel functions always run 
on a particular processor
– Master is responsible for scheduling;  slave sends service 
request to the master

– Disadvantages
• Failure of master brings down whole system

• Master can become a performance bottleneck

Bus



Peer Multiprocessor OS 

Non-symmetric 
:Each CPU 
has its own 
operating 

Operating system can execute on any processor
Each processor does self-scheduling

operating system: Makes sure two processors do not choose the same process
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operating 
system

Bus

Symmetric
– SMP multiprocessor 

model



Design issues 2: 
Assignment of Processes to Processors

Per-processor ready-queues vs global ready-queue
• Permanently assign process to a processor;

– Less overhead
– A processor could be idle while another processor has a backlog

• Have a global ready queue and schedule to any available processor
– can become a bottleneck
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– can become a bottleneck
– Task migration not cheap (cf. NUMA and scheduling)



Multiprocessor Scheduling:
Load sharing / Global ready queue
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• (sharing time) note use of single data 
structure for scheduling



Multiprocessor Scheduling 
Load Sharing: another problem
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• Problem with communication between two threads
– both belong to process A
– both running out of phase
– (relates to the idle-time-adds-efficiency example)



Design issues 3 (actually 2.5 ☺):
Multiprogramming on processors?

Experience shows:
– Threads of the same process running on separate processors
(to the extend of dedicating a processor to a thread)  yields 
dramatic gains in performance

– Allocating processors to threads ~ allocating pages to 
processes (can use working set model?)
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processes (can use working set model?)

– Specific scheduling discipline is less important with more than 
on processor; the decision of “distributing” tasks is more 
important



Multiprocessor Scheduling:
per processor or per-partition RQ

47

• (sharing space) - multiple threads of same 
process at same time across multiple CPUs



similar: Gang Scheduling
1. Groups of related threads scheduled as a unit (a gang)
2. All members of gang run simultaneously

• on different timeshared CPUs
3. All gang members start and end time slices together
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Gang Scheduling: another option
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Multiprocessor Thread Scheduling 
Dynamic Scheduling

• Number of threads in a process are altered dynamically by the 
application

• Programs (through thread libraries) give info to OS to manage 
parallelism
– OS adjusts the load to improve use

• Or os gives info to run-time system about available processors, to 
adjust # of threads (recall thread pools?).

• i.e dynamic vesion of partitioning:
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• i.e dynamic vesion of partitioning:



Multithreaded Multicore System

Solution by architecture: hyperthreading
Needs OS awareness though to get the 
corresponding efficiency



Thread Scheduling

• Many-to-one and many-to-many models, thread 
library schedules user-level threads to run on 
LWP
– Known as process-contention scope (PCS) since 
scheduling competition is within the process

• Kernel thread scheduled onto available CPU is 
system-contention scope (SCS) – competition 
among all threads in system

• E.g. Pthreads scheduling API allows specifying 
either PCS or SCS during thread creation



Summary: Multiprocessor Scheduling

Load sharing: processors/threads not assigned to particular 
processors

• load is distributed evenly across the processors;
• needs shared queues; may be a bottleneck 

Gang scheduling: Assigns threads to particular processors 
(simultaneous scheduling of threads that make up a process)
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Gang scheduling: Assigns threads to particular processors 
(simultaneous scheduling of threads that make up a process)

• Useful where performance severely degrades when any part of the 
application is not running (due to synchronization) 

• Extreme version: Dedicated processor assignment (no 
multiprogramming of processors)



Operating System Examples

• Solaris scheduling

• Windows XP scheduling

• Linux scheduling



Solaris Scheduling

Kernel 
preemptible
by RT tasks in 
multiprocessors
(unless interrupts (unless interrupts 
disabled)

A la Multilevel 
Queues – with 
feedback, where 
applicable 



Solaris Dispatch Table
interactive/timesharing threads



Windows XP Priorities

Also multilevel priority queue scheduling

Priority classes
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Linux Scheduling

• Two priority ranges: time-sharing and 
real-time

• One queue per processor/core



List of Tasks/readyQueue Indexed According 
to Priorities

one pair per core/processor 


