


.. memory management!

5000

32000

5000

20000
25000

32000

Nonltor

JOE 1

(a}

NMonitor

JOB 1

(JOB 2)

5000

25000

32000

0
5000

15000
20000
25000

32000

Monltor

JOB 2

157

Monltor

JOB 4

(JOB 1)
(JOB 2)

A%

5000
10000

25000

32000

5000

25000

32000

Monltor
JOB 3

(JORB 2)

15577

Monitor

JOB 2

75577

2



* Program

- must be brought into memory (must be made a
process) to be executed.

- process might need to wait on the disk, in input
gueue before execution starts

* Memory

- can be subdivided to accommodate multiple
processes

- needs to be allocated efficiently to pack as
many processes info memory as possible



- Idedlly programmers want memory that is
- large
- fast
- non volatile

* Memory hierarchy
- small amount of fast, expensive memory - cache
- some medium-speed, medium price main memory
- gigabytes of slow, cheap disk storage

* Memory manager handles the memory hierarchy



The CPU sends virtual

CPU addresses to the MMU
package
CPU 17
/ Memory \ Disk
_ management emory controller
unit

T T.

The MMU sends physical
addresses to the memory

Fig. source: (A.T. MOS 2/e)



Process contril

to program

Increasing
address
values

Current top
of stack

+ Cannot be sure where
program will be loaded in
s MEMONY

- address locations of variables,
code routines cannot be
absolute

Reference

wda - must keep a program out of
other processes’ partitions

Figure 7.1 Addressing Requirements for a Process



Base, bounds registers: set when the process is executing

Relative address

Prospess Controd Block
Base Register - ————————"f——>>—>—>—>———— — —
.
- Adder Program
l Absolobe
Bounds Register —— » Comparator | — — —dddress
i
| I 1
| I |
| I i
I T e ———
| w Data
: Interrupt to
I operating sysben
|
D e e e e e
Stack

FProcess image in
main menory



A process can be swapped out of memory to a backing store (swap
device)and later brought back (swap-in) into memory for continued

execution.

operating
system

user
space

main memory

@ swap out

@ swap in

N

process
P1
process
P,

backing store






Dperat;rﬁls_}stem OperatisrﬁlSystem . any pr'ogr'am' no
N — matter how small,
— occupies an entire
partition.
N - this causes internal
fragmentation.
(a) Equal-size partitions (b)) Unequal-size partitions 10

Figure 7.2 Example of Fixed Partitioning of a 64-Mbyte Memory



* Process is allocated exactly as much memory as required
- Eventuadlly holes in memory: external fragmentation

* Must use compaction to shift processes
(defragmentation)

Tipe ratimg Tipe ralimg Tipe ralimg
System System System
Priscess 1 | Priscess 1 201 20M
Priscess 4 Ah | Prisress 4
(BN “n
=i | il
Priscess & | &k Priscess & | &k Priscess 3 AN
M M 4M

(e) (n (g}

(h)

4N



4
% 7 / :
1 IAI 1 ///// 1 1 IBI 1 I(-I.;I / 1 1 PI 1 1 ///J//A r:
x 8 16 24 ’
(a)
11111000 PlO]|5 | H| 5|3 | P |8 | P |14 —
11111111 )
11001111 C
H|18] 2 »| P [20]| 6 »| P |26 = H [29 X
11111000 / ? \ f
fiE Hole Starts Length Process
at 18 2

(b)

(c)

* Part of memory with 5 occupied segments,

3 holes

- tick marks show allocation units
- shaded regions are free

* B - Corresponding bit map

- C - Same information as a list

12



(a)

(b)

(d)

Before X terminates

A x%
(c)%X B
) x ¥

becomes

becomes

becomes

becomes

After X terminates

A

I

A

72

I

717177722

Four neighbor combinations for the terminating
process/segment X

Can also use more advanced data structures; cf. Buddy systems ch 9

SGG-book (we do not study this closer )



Which available partition to allocate for a request?

First-fit: use the first block that is big enough
- fast

Next-fit: use the next block that is big enough
- tends to eat-up the large block at the end of the memory
Best-fit: use the smallest block that is big enough
- must search entire list (unless free blocks are ordered by size)
- produces the smallest leftover hole.
Worst-fit: use the /argest block
" - must also search entire list

- produces the largest leftover hole...
- .. but eats-up big blocks

14



15



* Partition memory into small
equal-size chunks (frames)
and divide each process
into the same size chunks
(pages)

* OS maintains a page table
for each process

- contains the frame
location for each page in
the process

- memory address = (page
number, offset within

page)

CPU

logical
address

physical
address

p | d

Y

d —»

p{

f

page table

physical
memory




page O

page 1

page 2

page 3

logical
memory

N = O

NjQ|h|=

3

page table

frame
number

page O

page 2

page 1

page 3

physical
memory

Question: do we avoid fragmentation completely?

17



Caching
disabled Modified Present/absent

r—, £

% \ \ Page frame number

Referenced Protection

(Fig. From A. Tanenbaum, Modern OS 2/e)

18



- page-table base, length registers
- each program reference to memory => 2 memory accesses

Virtual Address

Page # | Offset

Frame # Offset

Reglster

Table FPir]

PFage Table

Page
Framee

Pageit

| Frame #

Paging Mechanism Main Memory

H
-



a.k.a Translation Lookaside Buffers (TLBs): special fast-lookup
hardware cache; parallel search (cache for page table)

Address franslation (P, O): if P is in associative register (hit), get frame
# from TLB; else get frame # from page table in memory

Valid | Virtual page | Modified | Protection | Page frame
1 140 1 RW 31
1 20 0 R X 38
1 130 1 RW 29
1 129 1 RW 62
1 19 0 R X 50
1 21 0 R X 45
1 860 1 RW 14
Effective Access Time| 1 861 1 RW 75

- Associative Lookup = € time units (fraction of microsecond)
* Assume memory cycle time is 1 microsecond

- Hit ratio (= a): percentage of times a page number is found in the
associative registers

- Effective Access Time=(1+e)a+(2+e)(l-a)=2+¢c-« »



A

outer page
table

logical address
| P1 | P2 | d |

P1{

s 929

\

se e |-

500

[N ]

708 =

[N ]

(NN}

v

900

page of
page table

page table

outer page
table

-

100

500

708

900

929

memory

page of
page table




outer page Inner page offset
P1 1% d
42 10 12

2nd outer page , outerpage | innerpage  offset

P1 P> P3 d
32 10 10 12




logical address

f

physical
address

p | d r

d

-
>

Y

hash
function

hash table

—"|0||SI’T|_[||DIrli_T

physical
memory

The virtual page humber
is hashed into a page
table
- This page table contains
a chain of elements

hashing to the same
location

Virtual page numbers are
compared in this chain
searching for a match
- If amatchis found, the
corresponding physical

frame number (r in the
example) is extracted



CPU

physical
address

E—

logical
address ¢
pid| p | d i | d
A
searchJ }i
pid| p
page table

physical
memory

One entry for each real
page of memory

Entry consists of the
virtual address of the
page stored in that real
memory location, with
information about the
process that owns that
page

Decreases memory
needed to store each page
table, but increases time
needed to search the
table when a page
reference occurs

Use hash table to limit
the search to one — or at
most a few — page-table
entries



Shared code: one copy of read-only (reentrant) code shared
among processes (i.e., fext editors, compilers, window systems,

library-code, ...).
How to self-address a shared page?: watch for different numbering

of page, though; or use indirect referencing

ed 1

ed 2

ed 3

data 1

process P,

ed 1

ed 2

||~ |w®

page table
for P,

ed 3

data 3

process P,

N |~ |W

page table
for Py

ed 1

ed?2

ed 3

data 2

process P,

No|~|lW

page table
for P,

10

data 1

data 3

ed 1

ed?2

ed 3

data 2

25



* Memory-management scheme that
1 supports user view of
4 memory/program, i.e. a collection
of segments.
- segment = logical unit such as:
main program,
procedure,
2 function,

local, global variables,
3 common block,

stack,

symbol table, arrays

Userspace  physical memory
space

26



Protection: each entry in segment table:
- validation bit = O = illegal segment
- read/write/execute privileges

Code sharing at segment level (watch for segment numbers,
though; or use indirect referencing).

Segments vary in length => need dynamic partitioning for memory
allocation.

Virtual Address
sepment Number

Sepment Table Entry

R Qanrmanntatloan aosla




editor

segment O

data 1

Simpler to self-

segment 1

address a

shared SegmenT logical memory
by using the process &
same seg##

editor

segment O

data 2

segment 1

logical memory
process P,

limit base

0| 25286 | 43062
1 4425 | 68348
segment table
process P1

limit base

0| 25286 | 43062
1 8850 | 90003

segment table
process P,

43062

68348
72773

90003

98553

editor

data 1

data 2

physical memory

28



Virtual address space

Call stack

} Free

Adaress space Space currently being

alocated todne { } used by the parse tree

parse tree

IConstant tablel

|

bumped into the
source text table

Symbol table

} Symbol table has

* One-dimensional address space with growing tables
* One table may bump into another 29



Consideration

Paging

Segmentation

Need the programmer be aware No Yes
that this technique is being used?

How many linear address 1 Many
spaces are there?

Can the total address space Yes Yes
exceed the size of physical

memory?

Can procedures and data be No Yes
distinguished and separately

protected?

Can tables whose size fluctuates No Yes
be accommodated easily?

Is sharing of procedures No Yes

between users facilitated?

Why was this technique
invented?

To get a large
linear address
space without
having to buy
more physical
memory

To allow programs
and data to be broken
up into logically
independent address
spaces and to aid
sharing and
protection

30



- Paging
- transparent to the programmer
- eliminates external fragmentation

Segmentation
- visible to the programmer

- allows for growing data structures, modularity,
support for sharing and protection

- But: memory allocation?

Hybrid solution: page the segments (each segment is
broken into fixed-size pages)
- E.g. MULTICS, Pentium

31



logical address

yes

v

L segment | page—table

° length base no d

segment table trap o _|d‘

STBR

memory

—>@—>f—>|f|d"|—>

physical
address

page table for
segment s

32




- Supports both segmentation and segmentation
with paging
* CPU generates logical address
- Given to segmentation unit
* Which produces linear addresses
- Linear address given to paging unit

* Which generates physical address in main memory
* Paging units form equivalent of MMU

logical linear physical
CPU address " segmer?tation address | pagi.ng address L physical
unit unit memory




(Segment#, global/local segment partition, protectlon)

-
-
-
-
-
-
-
-
-
-
-
-
-

16 T 16

logical address | selector offset

descriptor table

—» segment descriptor

32-bit linear address
page number page offset

P1 P d
10 10 12




(logical address)

page directory i page table : offset ]
31 22 21 1 12 11 1 0
page 4-KB
Y table —» page
page B
directory l ~
—— n -
4R = 5 4-MB~~~__
,/ register ha0b e
One of the
processor’s Depending on
registers ] ﬂ.ag n page-
directory
page directory : offset

[
31 22 21 0




Supports fixed # of segments

* for portability (not all architectures support segmentation)

 kernel code/data, user code/data, task-state segment (data useful for
context switching), local data segment (usually some default)

Needs to comply with 32 and 64-bit architectures

*Uses 3 level-paging (see next)



0-bits in32-bit pendium

global middle page S
directory directory table
(linear address)
 global directory | middle directory | page table | offset
global
directory middla
directory page
i table page
global i frame
directory entry i » page table |
middle i entry »
CR3 —» directory entry
register 3
s
e




Is this

Comparison

field aniry
y A \ used?
Segment Virtual Page
number page frame Protection Age i
4 1 7 Read/write 13 | 1
6 0 2 Read only 10 | 1
12 3 1 Read/write 2 1
0
2 1 0 Execute only 7 1
2 2 12 Execute only 9 1
J— T —

Simplified version of the MULTICS TLB

Existence of 2 page sizes makes actual TLB more complicated (cf
pentium outline)



39



Main memory = cache of the disk space

Operating system brings into main memory a few pieces
of the program

Resident set - portion of process that is in main memory
when an address is heeded that is not in main memory a

page-fault interrupt is generated:

- OS places the process in blocking state and issues a disk IO
request

- another process is dispatched

40



With each page table entry a valid-invalid bit is

associated (initially O)
1 = in-memory
O = not-in-memory

Frame # valid-invalid bit
1
1
1
1
0
0
0
e table

During address transfat

ion, if valid-invalid bit in
page table entry is O = page fault interrupt fo OS 4



In response to page-fault interrupt, OS must:

Main Memory

o

"

Virtual Address
Page # | Offset
Translation
Lookaside Buffer
TLE hit
Page Table
TLE miss
L 4 L
Frame # Offset
Real Address
Page fault

Secondary

Memory

™ b

Fionra 8 7 Tles af a Tranelatinn T nnleacides Rnffar

get empty
frame (swap out
that page?).
swap in page
intfo frame.
reset tables,
validation bit

restart
instruction

42



Page replacement -want an algorithm which will result in minimum
number of page faults.

Page fault forces choice
- which page must be removed
- make room for incoming page

Modified page must first be saved

- unmodified just overwritten(use dirty b/t to optimize
writes to disk)

Better not to choose an often used page
- will probably need to be brought back in soon

43



44



Can be implemented using a circular buffer
Ex.:Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

3 frames
’
2
3
4 frames
’
2
3
4

3

4

2
3

5

9 page faults

10 page faults

Belady's Anomaly: more frames , sometimes more page faults
Problem: replaces pages that will be needed soon

45



- Replace page that will not be used for longest period of time.

* 4 frames example
1,2,3,4,1,2,5,1,2,3,4,5

6 page faults

e~ S I\

 How do we know this info?
- We don't
- Algo can be used for measuring how well other algorithms perform.

46



Idea: Replace the page that has not been referenced for
the longest time.

By the principle of locality, this should be the page least likely to
be referenced in the near future

Implementation:
* tag each page with the time of last reference
use a stack

Problem: high overhead (OS kernel involvement at every
memory referencelll) if HW support not available

47



1

2
3|5
413

Example: Reference string:
1,2,3,4,1,2,5,1,2,3,4,5

4

48



First frame in

circular buffer of
frames that are
candidates for replace me

uses use (reference) bit :

- initially O

- when page is referenced, set to
1 by HW

to replace a page:

- the first frame encountered
with use bit O is replaced.

- during the search for
replacement, each use bit set to
1is changed to O by OS

* note: if all bits set => FIFO

(@) State of buffer just prior to a page re placement

Figure 8.16 Example of Clock Policy Op retinn

i1 L
(b} State ul@umr the next page rep ent

49




Page

1 I I 1

R bits for | R bits for l R bits for ] R bits for j R bits for

pages 0-5, | pages 0-5, | pages 0-5, | pages 0-5, | pages 0-5,

clock tick O } clock tick 1 I clock tick 2 I clock tick 3 1 clock tick 4
| | | 1

ol1|o]1 i 1lo|o]|1 i 1lol1]o i ololo]1 ] 1]1]o]o
| l | 1
| I | 1
| I | |
1 I | 1
i | | |

10000000 ! 11000000 ! 11100000 | 11110000 ! 01111000
1 I | [}
| | | |

00000000 i 10000000 i 11000000 i 01100000 i 10110000
| I | 1
1 I | ]

10000000 i 01000000 i 00100000 i 00100000 i 10001000
| I | 1
1 I | 1

00000000 i 00000000 i 10000000 i 01000000 3 00100000
1 I | 1
1 I | 1

10000000 : 11000000 : 01100000 ! 10110000 ‘. 01011000
1 I | 1
1 I | 1
| I | |

10000000 ! 01000000 : 10100000 ! 01010000 ! 00101000
1 I | 1

(a) (b) (c) (d) (e)

* The aging algorithm simulates LRU in software

50



Each page has Reference (use) bit, Modified
(dirty) bit

- bits are set when page is referenced, modified

- Ref bit is cleared regularly

Pages are classified

.. not referenced, not modified

2. not referenced, modified (is it possible?)

. referenced, not modified

+ referenced, modified

NRU removes page at random from lowest numbered
non empty class

51



> Global vs local allocation policies
- Of relevance: Thrashing, working set

» Cleaning Policy
» Fetch Policy
* Page size

52



A0 10 A0 A0
A1 7 A1 A1
A2 5 A2 A2
A3 4 A3 A3
A4 6 A4 A4
A5 3 A5
BO 9 BO BO
B1 4 B1 B1
B2 6 B2 B2
B3 2 B3
B4 5 B4 B4
B5 6 B5 B5
B6 12 B6 B6
C1 3 C1 C1
c2 5 c2 c2
C3 6 C3 Cc3

(a)

(b)

> Original configuration
- Local page replacement
- Global page replacement

()

53



Page faults/sec

Number of page frames assigned

Per-process page fault rate as a function of the

number of page frames assignhed to the process
54



- If a process does not have “"enough” pages, the
page-fault rate is very high. This leads to:

- low CPU utilization.

- operating system may think that it needs to
increase the degree of multiprogramming.

- another process added to the system...
- and the cycle continues ...

'4
\V 4

- Thrashing = the system is busy serving page
faults (swapping pages in and out).

55



| >
I thrashing

CPU utilization

degree of multiprogramming

Why does paging work?
Locality model
- Process migrates from one locality to another.

- Localities may overlap.

Why does thrashing occur?
¥ size of locality > total memory size

56



increase number
of frames

upper bound

page-fault rate

lower bound

decrease number
of frames

number of frames

- Establish "acceptable” per-process page-fault rate.

- If actual rate too low, process loses frame.
- If actual rate too high, process gains frame.

57



memory address

page numbers

30

og

26

24

22

A Hﬁiﬂ w_ STt :i | -
by !--..1 Sl I||||||||; i || e il I.”“ st st tstunead® geamtlie”
| i
i o ) | |
Dﬂrll.l.! || | ,]|‘| [ I;li’ II| i|1-|l h.l IIIII Il' . i |
LU In | | " |I L || A : N
| i i " { ll | |‘|||1|||'|Il i ‘m' 1:I’|.| w;r
i 5|.|I.i‘||. ; .:
A i | ﬂ' it : -
11' |I I| ||||‘| _L ! i :tl Illlllll i |r‘l|I]IIII|Il| :I I l|||1||||||“| . ] ot :
|

L
f
||

: Lot Lt
L i

,ll J. T 1
T e o) R

[ b im0 ' |: -
il l\i "l

20_""

18 1.

" Sun '52;3‘

execution time ——»



A = working-set window = a fixed number of page references
Example: 10,000 instructions

WSS; (working set of Process P) =

total number of pages referenced in the most recent A
references (varies in time)

- if A too small will not encompass entire locality.
- if A too large will encompass several localities.
- if A = unbounded = will encompass entire program.

D=Y W55 = total demand for frames
D > m= Thrashing

Policy: if D> m, then suspend some process(es).

59



page reference table
...2615777751623412344434344413234443444...

t i

WS(t,) = {12567} WS(t,) = {3.4)

2



working set
1
page
fault
rate
0 >
time




- Approximate with interval timer +
reference bit (recall LRU approximation in
software /aging algo)

- Example: A = 10,000

- Timer interrupts after every 5000 time
units.

- Keep in memory 2 bits for each page.

- Whenever a timer interrupts: copy each
page’s ref-bit to one of the memory bits and

reset each of them
- If one of the bits in memory = 1 = page in
working set.

- Why is this not completely accurate?

- Improvement = 10 bits and interrupt every
1000 time units.

Page

1 I

R bits for | R bits for i R bits for

pages 0-5, i pages 0-5, i pages 0-£

clock tick 0 i clock tick 1 ' clock tick

1 I

ol[1]o]1 } 1]olo|1 i 1]of1]c
} :
1 I
I ]
1 I
| |

10000000 ! 11000000 : 1110000(
1 I
1 I

00000000 i 10000000 i 1100000(
1 I
1 ]

10000000 i 01000000 i 0010000¢
1 [}
1 I

00000000 i 00000000 i 1000000(
1 I
1 I

10000000 | 11000000 | 0110000(
1 I
1 I
I I

10000000 ! 01000000 : 1010000(
1 I

(@)

(b)

62

(c)



- Lowest priority process

* Faulting process

- does not have its working set in main memory so will be
blocked anyway

- Last process activated

- this process is least likely to have its working set resident
* Process with smallest resident set

- this process requires the least future effort to reload

- Largest process
- obtains the most free frames

63



» Global vs local allocation policies
- Of relevance: Thrashing, working set

* Cleaning Policy
- Fetch Policy
* Page size

64



Determines when dirty pages are written to disk:

Need for a background process, paging daemon: periodically
inspects state of memory

Precleaning: first clean then select to free (if needed)

-
_— 3 ’
(1]

Page buffering: first free (even when not needed) then clean

65



Precleaning: first clean then free (if needed)

pages are written out in batches, off-line, periodically: When too

few frames are free, paging daemon
- selects pages to evict using a replacement algorithm
- can use same circular list (clock)

- as regular page replacement algorithm but with different

pointers

66



Page buffering: first free then clean

use modified, unmodified lists of replaced pages (freed in

advance)
- A page in the unmodified list may be:
- reclaimed if referenced again
* lost when its frame is assigned to another page

- Pages in the modified list are

- periodically written out in batches

- can also be reclaimed



Determines when a page should be brought into memory:

Demand paging only brings pages into main memory when a
reference is made to it
- Many page faults when process first started

Prepaging brings in more pages than needed

- More efficient to bring in pages that reside contiguously on the
disk

68



» Global vs local allocation policies
- Of relevance: Thrashing, working set

» Cleaning Policy
» Fetch Policy
- Page size

69



- Small page size:
- less internal fragmentation
- more pages required per process
- larger page tables (may not be always in main memory)

- Small page size:
- large number of pages in main memory; as time goes on during

execution, the pages in memory will contain portions of the
process hear recent references. Page faults low.

- Increased page size causes pages to contain locations further
from recent reference. Page faults rise.

- Page size approaching the size of the program: Page faults low
again.

Secondary memory designed to efficiently transfer large blocks =>

favours large page size
70



Page Fault Rate

Page Fault Rate

(a) Page Sire (b} Mumber of Page Frames Allocated

P = size of entire process
W = working sel size

N = total number of pages in process

Figure 8.11 Typical Paging Behavior of a Program

N



* Overhead due to page table and internal

fragmentation

page table space

overhead internal
| fragmentation
* Where
- 8§ = average process size
" P=pagesize Optimized when

- e = page entry size
p =A/2se

72



* Multiple page sizes provide the flexibility needed (to
also use TLBs efficiently):

- Large pages can be used for program instructions
- Small pages can be used for threads

* Multiple page-sizes available by microprocessors: MIPS
R4000, UltraSparc, Alpha, Pentium.

 Most current operating systems support only one page
size, though.

73



Four times when OS involved with paging

1. Process creation
- determine program size
- create page table
2. Process execution
- MMU reset for new process
- TLB flushed
3. Page fault time
- detfermine virtual address causing fault
- swap target page out, needed page in
4. Process termination time
- release page table, pages

74



* Need to specify some pages locked, aka pinned
(memory interlock)
- exempted from being target pages
- Recall lock-bit
- Examples:
- Proc. has just swapped in a page
* Or Proc issues call for read from device into buffer

- another processes starts up
* has a page fault

- buffer for the first proc may be chosen to be paged
out

75



Main memory Disk Main memory Disk

Y
Pages Pages N
0 3 Swap area 0 3 Swap area
7
4 6 z 4 6
2
Page | Page
table

a) (b)

(a) Paging to static swap area
(b) Backing up pages dynamically

76



- Page Fault Rate 0 < p<1.0
- if p= 0 no page faults
- if p=1, every reference is a fault
- Effective Access Time (EAT)
EAT = (1- p) x memory access
+ p (page fault overhead
+ [swap page out ]
+ swap page in
+ restart overhead)

77



Memory access time = 200 nanoseconds

Average page-fault service time = 8 milliseconds

EAT = (1-p) x 200 + p (8 milliseconds)
=(1-p) x 200 +p x 8,000,000
=200 + p x 7,999,800

If one access out of 1,000 causes a page fault, then
EAT = 8.2 microseconds.
This is a slowdown by a factor of 40l



* Program structure
- Array A[1024, 1024] of integer
- Each row is stored in one page

- Program 1 for j:= 110 1024 do
for /:= 110 1024 do
Al7j]:=0;
1024 x 1024 page faults
- Program 2 for /:= 110 1024 do
for j:= 110 1024 do
Alrj]:=0;

1024 page faults

79



Memory-mapped file I/0O allows file I/O to be treated as routine
memory access by mapping a disk block to a page in memory

A file is initially read using demand paging. A page-sized portion of
the file is read from the file system into a physical page.
Subsequent reads/writes to/from the file are treated as ordinary
memory accesses.

Simplifies file access by treating file I/O through memory rather
than read () write() system calls

Also allows several processes to map the same file allowing the
pages in memory to be shared



e
| ——
I I :
r-r--i-- 3
1 - - |—:_' 4
2 b o < 3 el line
3 I i b o 6
O R
I - I |
5 S L 6 =i :
6 Fyirt! AN
I [ I
g !
IIIL““"Z 1 .(.__.!||:
_process A !.:_____; = :;---' T _process B
virtual memory |~ | I :\nrtual memory
o ::
L | - -
R - “rr-—" Need to protect
: P
physical memory shared data from
=1 —_—— concurrent
112138415 |6 ACCESSES, more
disk file in forthco

Can also be used to share data lectures




process,

shared
memory

memory-mapped
. file

shared
memory

process,

shared
memory

THE way to share data among processes in windows systems




- Windows XP

- Solaris



Uses demand paging with clustering. Clustering brings in pages
surrounding the faulting page

Processes are assigned working set minimum and working set
maximum
- Working set minimum: minimum number of pages the process is
guaranteed to have in memory
- A process may be assigned as many pages up to its working set
maximum:
- Allocate from the free-list if non-empty

When the amount of free memory in the system falls below a
threshold, automatic working set trimming is performed to restore
the amount of free memory

- trimming removes pages from processes that have pages in excess of their
working set minimum (victims selected using second-chance or FIFO -like)



Maintains a list of free (but not overwritten) pages to assign to
faulting processes (prepare then clean)

- Lotsfree - threshold parameter (amount of free memory) to begin paging
- Desfree - threshold parameter to increasing paging
- Minfree - threshold parameter to begin swapping
* Paging is performed by pageout process: scans pages using modified
clock algorithm (2 hands: second-chance and freeing hands)

- Scanrate: ranges from slowscan to fastscan - depending upon the amount
of free memory available )

8192 |
fastscan

scan rate

100 a
slowscan

| | »
I [ I -

minfree desfree lotsfree
amount of free memory




8192
fastscan

2
©
c
@
3
?

100
slowscan

|
minfree

|
desfree

amount of free memory

lotsfree




