
Memory Management
Virtual Memory

Background; key issues

Memory allocation schemes

Virtual memory

Memory management design and implementation issues

1

Memory management design and implementation issues

Remember…
Basic OS structures: intro in historical order
(step 2 & 2,5) multiprogramming needs …

• … memory management!

2

Background

• Program
– must be brought into memory (must be made a
process) to be executed.

– process might need to wait on the disk, in input
queue before execution starts

• Memory

3

• Memory
– can be subdivided to accommodate multiple
processes

– needs to be allocated efficiently to pack as
many processes into memory as possible

Memory Management

• Ideally programmers want memory that is
– large

– fast

– non volatile

• Memory hierarchy

4

• Memory hierarchy
– small amount of fast, expensive memory – cache

– some medium-speed, medium price main memory

– gigabytes of slow, cheap disk storage

• Memory manager handles the memory hierarchy

The position and function of the MMU

5

Fig. source: (A.T. MOS 2/e)

Relocation and Protection

• Cannot be sure where
program will be loaded in
memory
– address locations of variables,
code routines cannot be
absolute

6

absolute

– must keep a program out of
other processes’ partitions

Hardware support for relocation and protection

Base, bounds registers: set when the process is executing

7

Swapping (Suspending) a process

A process can be swapped out of memory to a backing store (swap
device) and later brought back (swap-in) into memory for continued
execution.

8

How is memory allocated?

9

Contiguous Allocation of Memory:
Fixed Partitioning

• any program, no
matter how small,
occupies an entire
partition.

• this causes internal
fragmentation.

10

• this causes internal
fragmentation.

Contiguous Allocation:
Dynamic Partitioning

• Process is allocated exactly as much memory as required

• Eventually holes in memory: external fragmentation

• Must use compaction to shift processes
(defragmentation)

11

Dynamic partitioning:
Memory Management with

Bit Maps and linked lists [AT MOS 2e]

12

• Part of memory with 5 occupied segments,
3 holes
– tick marks show allocation units
– shaded regions are free

• B - Corresponding bit map
• C - Same information as a list

Memory Management with Linked Lists:
need of merge operations (AT MOS 2e-book)

13

Four neighbor combinations for the terminating
process/segment X

Can also use more advanced data structures; cf. Buddy systems ch 9

SGG-book (we do not study this closer)

Dynamic Partitioning:
Placement algorithms

Which available partition to allocate for a request?

• First-fit: use the first block that is big enough
– fast

• Next-fit: use the next block that is big enough
– tends to eat-up the large block at the end of the memory

• Best-fit: use the smallest block that is big enough

14

• Best-fit: use the smallest block that is big enough
– must search entire list (unless free blocks are ordered by size)

– produces the smallest leftover hole.

• Worst-fit: use the largest block
– must also search entire list

– produces the largest leftover hole…

– … but eats-up big blocks

.

Q: how to avoid external fragmentation?

15

To avoid external fragmentation: Paging

• Partition memory into small
equal-size chunks (frames)
and divide each process
into the same size chunks
(pages)

• OS maintains a page table
for each process

16

for each process
– contains the frame
location for each page in
the process

– memory address = (page
number, offset within
page)

Paging Example

17

Question: do we avoid fragmentation completely?

Typical page table entry

18

(Fig. From A. Tanenbaum, Modern OS 2/e)

Implementation of Page Table?
1. Main memory:

• page-table base, length registers
• each program reference to memory => 2 memory accesses

19

Implementation of Page Table?
2: Associative Registers

Page # Frame #

a.k.a Translation Lookaside Buffers (TLBs): special fast-lookup
hardware cache; parallel search (cache for page table)
Address translation (P, O): if P is in associative register (hit), get frame
from TLB; else get frame # from page table in memory

20

Effective Access Time

• Associative Lookup = ε time units (fraction of microsecond)

• Assume memory cycle time is 1 microsecond

• Hit ratio (= α): percentage of times a page number is found in the
associative registers

• Effective Access Time = (1 + ε) α + (2 + ε)(1 – α) = 2 + ε – α

Two-Level Page-Table Scheme and
address translation

Three-level Paging Scheme

Hashed Page Tables

• The virtual page number
is hashed into a page
table
– This page table contains
a chain of elements
hashing to the same hashing to the same
location

• Virtual page numbers are
compared in this chain
searching for a match
– If a match is found, the
corresponding physical
frame number (r in the
example) is extracted

Inverted Page Table

• One entry for each real
page of memory

• Entry consists of the
virtual address of the
page stored in that real
memory location, with
information about the
process that owns that process that owns that
page

• Decreases memory
needed to store each page
table, but increases time
needed to search the
table when a page
reference occurs

• Use hash table to limit
the search to one — or at
most a few — page-table
entries

Shared Pages

Shared code: one copy of read-only (reentrant) code shared
among processes (i.e., text editors, compilers, window systems,

library-code, ...).

How to self-address a shared page?: watch for different numbering
of page, though; or use indirect referencing

25

Segmentation

1

2

1

4

• Memory-management scheme that
supports user view of
memory/program, i.e. a collection
of segments.

• segment = logical unit such as:

main program,

26

3

4

2

3

user space physical memory

space

main program,

procedure,

function,

local, global variables,

common block,

stack,

symbol table, arrays

Segmentation Architecture

• Protection: each entry in segment table:

– validation bit = 0 ⇒ illegal segment

– read/write/execute privileges

– ...

• Code sharing at segment level (watch for segment numbers,
though; or use indirect referencing).

• Segments vary in length => need dynamic partitioning for memory

27

• Segments vary in length => need dynamic partitioning for memory
allocation.

Sharing of segments

Simpler to self-
address a
shared segment

28

address a
shared segment
by using the
same seg#

Segmentation (A.T. MOS 2/e)

29

• One-dimensional address space with growing tables
• One table may bump into another

Comparison of paging and segmentation
(A.T. MOS 2/e)

30

Combined Paging and Segmentation

• Paging
– transparent to the programmer
– eliminates external fragmentation

• Segmentation

– visible to the programmer
– allows for growing data structures, modularity,

31

– allows for growing data structures, modularity,
support for sharing and protection

– But: memory allocation?

• Hybrid solution: page the segments (each segment is
broken into fixed-size pages)
– E.g. MULTICS, Pentium

Combined Address Translation Scheme

32

Example: The Intel Pentium

• Supports both segmentation and segmentation
with paging

• CPU generates logical address
– Given to segmentation unit

• Which produces linear addresses

– Linear address given to paging unit– Linear address given to paging unit
• Which generates physical address in main memory

• Paging units form equivalent of MMU

Intel Pentium Segmentation

(Segment#, global/local segment partition, protection)

16 16

Pentium Paging Architecture

One of the

processor’s

registers

OR

Depending on

flag in page-

directory

Linear Address in Linux in Pentium
Architecture

Supports fixed # of segments

• for portability (not all architectures support segmentation)

• kernel code/data, user code/data, task-state segment (data useful for
context switching), local data segment (usually some default)

Needs to comply with 32 and 64-bit architectures

•Uses 3 level-paging (see next)

Three-level Paging in Linux

0-bits in32-bit pendium

Segmentation with Paging: MULTICS
(A.T. MOS 2/e)

38

• Simplified version of the MULTICS TLB
• Existence of 2 page sizes makes actual TLB more complicated (cf

pentium outline)

Virtual memory

39

Execution of a program:
Virtual memory concept

Main memory = cache of the disk space

• Operating system brings into main memory a few pieces
of the program

• Resident set - portion of process that is in main memory

• when an address is needed that is not in main memory a

40

• when an address is needed that is not in main memory a
page-fault interrupt is generated:
– OS places the process in blocking state and issues a disk IO
request

– another process is dispatched

Valid-Invalid Bit

• With each page table entry a valid–invalid bit is
associated (initially 0)
1 ⇒ in-memory
0⇒ not-in-memory

1

1

Frame # valid-invalid bit

41

• During address translation, if valid–invalid bit in
page table entry is 0 ⇒ page fault interrupt to OS

1

1

1

0

0

0

M

page table

Page Fault and (almost) complete address-translation scheme

• get empty
frame (swap out
that page?).

• swap in page
into frame.

• reset tables,

In response to page-fault interrupt, OS must:

42

• reset tables,
validation bit

• restart
instruction

if there is no free frame?

Page replacement –want an algorithm which will result in minimum
number of page faults.

• Page fault forces choice
– which page must be removed
– make room for incoming page

• Modified page must first be saved

43

• Modified page must first be saved
– unmodified just overwritten(use dirty bit to optimize
writes to disk)

• Better not to choose an often used page
– will probably need to be brought back in soon

Replacement algorithms in virtual memory

44

First-In-First-Out (FIFO) Replacement Algorithm

Can be implemented using a circular buffer
Ex.:Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• 3 frames

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

45

• 4 frames

• Belady’s Anomaly: more frames , sometimes more page faults
Problem: replaces pages that will be needed soon

33 2 4

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3

Optimal Replacement Algorithm

• Replace page that will not be used for longest period of time.

• 4 frames example

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

1 4

46

• How do we know this info?
– We don’t

• Algo can be used for measuring how well other algorithms perform.

2

3

4

6 page faults

4 5

Least Recently Used (LRU) Replacement Algorithm

Idea: Replace the page that has not been referenced for
the longest time.

• By the principle of locality, this should be the page least likely to
be referenced in the near future

Implementation:
• tag each page with the time of last reference

47

• tag each page with the time of last reference
• use a stack
Problem: high overhead (OS kernel involvement at every
memory reference!!!) if HW support not available

LRU Algo (cont)

1

2

3

5

45

48

Example: Reference string:

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

4

4 3

5

LRU Approximations:
Clock/Second Chance -

• uses use (reference) bit :
– initially 0

– when page is referenced, set to
1 by HW

• to replace a page:

49

• to replace a page:
– the first frame encountered
with use bit 0 is replaced.

– during the search for
replacement, each use bit set to
1 is changed to 0 by OS

• note: if all bits set => FIFO

Simulating LRU:
the aging algorithm(A.B. MOS 2/e)

50

• The aging algorithm simulates LRU in software

LRU Approximations:
Not Recently Used Page Replacement Algorithm

• Each page has Reference (use) bit, Modified
(dirty) bit
– bits are set when page is referenced, modified

– Ref bit is cleared regularly

• Pages are classified
not referenced, not modified

51

1. not referenced, not modified

2. not referenced, modified (is it possible?)!

3. referenced, not modified

4. referenced, modified

• NRU removes page at random from lowest numbered
non empty class

Design Issues for Paging Systems

• Global vs local allocation policies

52

• Global vs local allocation policies
– Of relevance: Thrashing, working set

• Cleaning Policy

• Fetch Policy

• Page size

Local versus Global Allocation Policies (A.T. MOS2/e)

53

• Original configuration
• Local page replacement
• Global page replacement

Local versus Global Allocation Policies (A.T. MOS2/e)

54

Per-process page fault rate as a function of the
number of page frames assigned to the process

Thrashing

• If a process does not have “enough” pages, the
page-fault rate is very high. This leads to:

– low CPU utilization.

– operating system may think that it needs to
increase the degree of multiprogramming.

– another process added to the system…

55

– another process added to the system…

– and the cycle continues …

• Thrashing ≡ the system is busy serving page
faults (swapping pages in and out).

Thrashing Diagram

56

Why does paging work?
Locality model
– Process migrates from one locality to another.
– Localities may overlap.

Why does thrashing occur?
Σ size of locality > total memory size

Page-Fault Frequency Scheme and Frame Allocation
for Thrashing Avoidance

57

• Establish “acceptable” per-process page-fault rate.
– If actual rate too low, process loses frame.

– If actual rate too high, process gains frame.

Locality In A Memory-Reference Pattern

Working-Set Model for Thrashing Avoidance

• ∆ ≡ working-set window ≡ a fixed number of page references
Example: 10,000 instructions

• WSSi (working set of Process Pi) =
total number of pages referenced in the most recent ∆
references (varies in time)

– if ∆ too small will not encompass entire locality.

– if ∆ too large will encompass several localities.

59

– if ∆ too large will encompass several localities.

– if ∆ = unbounded ⇒ will encompass entire program.

• D = Σ WSSi ≡ total demand for frames

• D > m⇒ Thrashing

• Policy: if D > m, then suspend some process(es).

Working-set model

Working Sets and Page Fault Rates

Keeping Track of the Working Set

• Approximate with interval timer +
reference bit (recall LRU approximation in
software /aging algo)

• Example: ∆ = 10,000
– Timer interrupts after every 5000 time

units.

– Keep in memory 2 bits for each page.

– Whenever a timer interrupts: copy each

62

– Whenever a timer interrupts: copy each
page’s ref-bit to one of the memory bits and
reset each of them

– If one of the bits in memory = 1 ⇒ page in
working set.

• Why is this not completely accurate?

• Improvement = 10 bits and interrupt every
1000 time units.

Process Suspension for Thrashing Avoidance:
which process to chose?

• Lowest priority process
• Faulting process

– does not have its working set in main memory so will be
blocked anyway

• Last process activated
– this process is least likely to have its working set resident

63

– this process is least likely to have its working set resident

• Process with smallest resident set
– this process requires the least future effort to reload

• Largest process
– obtains the most free frames

Design Issues for Paging Systems

• Global vs local allocation policies

64

• Global vs local allocation policies
– Of relevance: Thrashing, working set

• Cleaning Policy

• Fetch Policy

• Page size

Cleaning Policy

Determines when dirty pages are written to disk:
• Need for a background process, paging daemon: periodically

inspects state of memory

Precleaning: first clean then select to free (if needed)

65

Page buffering: first free (even when not needed) then clean

Cleaning Policy: precleaning

Precleaning: first clean then free (if needed)

• pages are written out in batches, off-line, periodically: When too

few frames are free, paging daemon

– selects pages to evict using a replacement algorithm

66

– can use same circular list (clock)

• as regular page replacement algorithm but with different

pointers

Cleaning Policy: page buffering

Page buffering: first free then clean

• use modified, unmodified lists of replaced pages (freed in

advance)

– A page in the unmodified list may be:

67

• reclaimed if referenced again

• lost when its frame is assigned to another page

– Pages in the modified list are

• periodically written out in batches

• can also be reclaimed

Fetch Policy

Determines when a page should be brought into memory:

Demand paging only brings pages into main memory when a
reference is made to it
– Many page faults when process first started

Prepaging brings in more pages than needed

68

Prepaging brings in more pages than needed
– More efficient to bring in pages that reside contiguously on the
disk

Design Issues for Paging Systems

• Global vs local allocation policies

69

• Global vs local allocation policies
– Of relevance: Thrashing, working set

• Cleaning Policy

• Fetch Policy

• Page size

Page Size: Trade-off

• Small page size:
– less internal fragmentation
– more pages required per process
– larger page tables (may not be always in main memory)

• Small page size:
– large number of pages in main memory; as time goes on during

70

– large number of pages in main memory; as time goes on during
execution, the pages in memory will contain portions of the
process near recent references. Page faults low.

– Increased page size causes pages to contain locations further
from recent reference. Page faults rise.

– Page size approaching the size of the program: Page faults low
again.

• Secondary memory designed to efficiently transfer large blocks =>
favours large page size

Page Size: managing space-overhead trade-off
(A.T. MOS2/e)

• Overhead due to page table and internal
fragmentation

s e p
overhead

⋅
= +

page table space

72

• Where
– s = average process size

– p = page size

– e = page entry size

2

s e p
overhead

p

⋅
= + internal

fragmentation

Optimized when

2p se=

Page Size (cont)

• Multiple page sizes provide the flexibility needed (to
also use TLBs efficiently):

– Large pages can be used for program instructions

– Small pages can be used for threads

• Multiple page-sizes available by microprocessors: MIPS

73

• Multiple page-sizes available by microprocessors: MIPS
R4000, UltraSparc, Alpha, Pentium.

• Most current operating systems support only one page
size, though.

Implementation Issues
Operating System Involvement with Paging (A.T. MOS2/e)

Four times when OS involved with paging
1. Process creation

− determine program size
− create page table

Process execution

74

create page table

2. Process execution
− MMU reset for new process
− TLB flushed

3. Page fault time
− determine virtual address causing fault
− swap target page out, needed page in

4. Process termination time
− release page table, pages

Implementation Issues
Locking Pages in Memory

• Need to specify some pages locked, aka pinned
(memory interlock)
– exempted from being target pages
– Recall lock-bit

• Examples:

75

• Examples:
– Proc. has just swapped in a page

• Or Proc issues call for read from device into buffer

– another processes starts up
• has a page fault

– buffer for the first proc may be chosen to be paged
out

Implementation Issues
Backing Store (A.T. MOS2/e)

76

(a) Paging to static swap area
(b) Backing up pages dynamically

Performance of Demand Paging:

• Page Fault Rate 0 ≤ p ≤ 1.0
– if p = 0 no page faults
– if p = 1, every reference is a fault

• Effective Access Time (EAT)

EAT = (1 – p) x memory access

77

EAT = (1 – p) x memory access
+ p (page fault overhead
+ [swap page out]

+ swap page in

+ restart overhead)

Demand Paging Example

• Memory access time = 200 nanoseconds

• Average page-fault service time = 8 milliseconds

• EAT = (1 – p) x 200 + p (8 milliseconds)

= (1 – p) x 200 + p x 8,000,000

= 200 + p x 7,999,800= 200 + p x 7,999,800

• If one access out of 1,000 causes a page fault, then

EAT = 8.2 microseconds.

This is a slowdown by a factor of 40!!

Other Considerations
programmer’s perspective

• Program structure
– Array A[1024, 1024] of integer

– Each row is stored in one page

– Program 1 for j := 1 to 1024 do
for i := 1 to 1024 do

A[i,j] := 0;
1024 x 1024 page faults

79

A[i,j] := 0;
1024 x 1024 page faults

– Program 2 for i := 1 to 1024 do
for j := 1 to 1024 do

A[i,j] := 0;
1024 page faults

Memory-Mapped Files

• Memory-mapped file I/O allows file I/O to be treated as routine
memory access by mapping a disk block to a page in memory

• A file is initially read using demand paging. A page-sized portion of
the file is read from the file system into a physical page.
Subsequent reads/writes to/from the file are treated as ordinary
memory accesses.memory accesses.

• Simplifies file access by treating file I/O through memory rather
than read() write() system calls

• Also allows several processes to map the same file allowing the
pages in memory to be shared

Memory Mapped Files

Can also be used to share data

Need to protect

shared data from

concurrent

accesses; more

in forthcoming

lectures

Memory-Mapped Shared Memory in Windows

THE way to share data among processes in windows systems

Operating System Examples
highlight issues

• Windows XP

• Solaris

Windows XP virtual memory

• Uses demand paging with clustering. Clustering brings in pages
surrounding the faulting page

• Processes are assigned working set minimum and working set
maximum
– Working set minimum: minimum number of pages the process is
guaranteed to have in memoryguaranteed to have in memory

– A process may be assigned as many pages up to its working set
maximum:
• Allocate from the free-list if non-empty

• When the amount of free memory in the system falls below a
threshold, automatic working set trimming is performed to restore
the amount of free memory
– trimming removes pages from processes that have pages in excess of their

working set minimum (victims selected using second-chance or FIFO -like)

Solaris virtual memory

• Maintains a list of free (but not overwritten) pages to assign to
faulting processes (prepare then clean)
– Lotsfree – threshold parameter (amount of free memory) to begin paging
– Desfree – threshold parameter to increasing paging
– Minfree – threshold parameter to begin swapping

• Paging is performed by pageout process: scans pages using modified
clock algorithm (2 hands: second-chance and freeing hands)

– Scanrate : ranges from slowscan to fastscan - depending upon the amount – Scanrate : ranges from slowscan to fastscan - depending upon the amount
of free memory available

Solaris 2 Page Scanner

