
Resource Allocation and Deadlock Resource Allocation and Deadlock
Handling

What is resource allocation?
Think of planning a party:
Need resources: party room orchestra consumables Need resources: party room, orchestra, consumables, ...

2

What is a deadlock?

3

Conditions for Deadlock
[Coffman-etal 1971] 4 conditions must hold simultaneously for a deadlock to
occur:

• Mutual exclusion: only one process at a time
can use a resource.

• Hold and wait: a process holding some
resource can request additional resources and
wait for them if they are held by other

Room ok
Need music

wait for them if they are held by other
processes.

• No preemption: a resource can only be • No preemption: a resource can only be
released by the process holding it, after that
process has completed its task.

examples preemptible/non preemtible
Music ok
Need room – examples preemptible/non-preemtible

resources?

Ci l it th i t i l h i f
4

• Circular wait: there exists a circular chain of
2 or more blocked processes, each waiting for
a resource held by the next proc. in the chain

Resource Allocation & Handling of Deadlocks

• Structurally restrict the way in which processes
request resources

Be repsonsible,
follow rules, request resources

– deadlock prevention: deadlock is not possible
follow rules,
PREVENT

• Require processes to give advance info about the
(max) resources they will require; then schedule (max) resources they will require; then schedule
processes in a way that avoids deadlock.
– deadlock avoidance: deadlock is possible, but OS

uses advance info to avoid ituses advance info to avoid it

GO BACK
• Allow a deadlock state and then recover YOU HAVE COME

WRONG WAY

5
• Ignore the problem and pretend that deadlocks

never occur in the system (can be a “solution”
sometimes?!…)

Roadmap: 1st station

• Structurally restrict the way in which processes
request resources

Be repsonsible,
follow rules, request resources

– deadlock prevention: deadlock is not possible
follow rules,
PREVENT

6

Resource Allocation with Deadlock Prevention
How to be RESPONSIBLE AND PREVENT?

Restrain the ways requests can be made; eliminate at least one of the 4

• Mutual Exclusion – (cannot do much here …)

y q
conditions, so that deadlocks are impossible to happen:

• Hold and Wait – guarantee that when a process requests a resource, it
does not hold any other resources.

process requests and be allocated all its resources at once– process requests and be allocated all its resources at once
– Get both room and music at once or none

• No Preemption – a process holding some resources requests another
resource that cannot be immediately allocated it releases the held resource that cannot be immediately allocated, it releases the held
resources and has to request them again.

– Be polite, B releases music for At o proceed

• Circular Wait – impose total ordering of all resource types, and require
that each process requests resources in an increasing order of
enumeration

e g first the room then the music Examples?
7

– e.g first the room, then the music Examples?
How to help procs do so with the
synchronization tools we have?

Fight the circular wait:
Dining philosophers exampleDining philosophers example

request forks in increasing fork-id
var f[0..n]: bin-semaphore /init all 1 /p

P_i: (i!=n)
R

Pn
Repeat

Idea:
• HierarchicalRepeat

Wait(f[i])
Wait(f[(i+1)modn])

Repeat
Wait(f[(i+1)modn])
Wait(f[i])

• Hierarchical
ordering of
resources([()])

Eat Eat • Proc’s request
their needed

Signal(f[(i+1)modn])
Signal(f[i])

Signal(f[i])
Signal(f[(i+1)modn])

resources in
increasing order

Think
forever

Think
forever

8

Fight the hold and wait:
Dining philosophers exampleDining philosophers example

semaphore S[N], initially 0
Semaphore mutex init 1

take_forks(i)
it(t)

leave_forks(i)
wait(mutex)Semaphore mutex, init 1

int state[N]
Pi: do

wait(mutex)
state(i) := HUNGRY
help(i)

wait(mutex)
state(i) := THINKING
help(left(i))Pi: do

<think>
take_forks(i)

help(i)
signal(mutex)
wait(S[i])

help(left(i))
help(right(i))
signal(mutex)

<eat>
leave_forks(i)

f Id l t l ith fforever

help(k)

Idea: apply mutex algorithm for
each neighbourhood,
instead of for each fork

help(k)
if state(k) ==HUNGRY && state(left(k)) != EATING && state(left(k)) != EATING then

state(k) := EATING

9

state(k) : EATING
signal(S[i])

Fight the no-preemption:
Dining philosophers exampleDining philosophers example

var f[0..n]: record
s: bin-semaphore /init 1/ trylock(fork):p
available: boolean /init 1 /

P_i:
Repeat

wait(fork.s)
If fork.available then

fork.available := false
ret:= trueRepeat

While <not holding both forks> do
Lock(f[i])
If !t l k(f[(i 1) d]) th l s f[i]

ret:= true
else ret:= false

Signal(fork.s)
Return(ret)If !trylock(f[(i+1)modn]) then release f[i];

od
Eat

R l (f[i])

Return(ret)

Lock(fork):Release(f[i])
Release(f[(i+1)modn])
Think

Lock(fork):
Repeat
Until (trylock(fork))

forever Release(fork):
wait(fork.s)

fork.available := true

Idea: release held
resources and retry when
the next one is not

10
Signal(fork.s)the next one is not

available

Roadmap: 2nd station

• Require processes to give advance info about the
(max) resources they will require; then schedule () y q
processes in a way that avoids deadlock.
– deadlock avoidance: deadlock is possible, but OS

uses advance info to avoid ituses advance info to avoid it

11

Deadlock avoidance: System Model

• Resource types R1, R2, . . ., Rm

– e g CPU memory space I/O devices filese.g. CPU, memory space, I/O devices, files
– each resource type Ri has Wi instances.

• Each process utilizes a resource as follows:
request – request

– use
– release

Resource-Allocation Graph
A set of vertices V and a set of edges EA set of vertices V and a set of edges E.
– V is partitioned into two sets:

• P = {P1, P2, …, Pn} the set of processes
R {R R R } th t f t• R = {R1, R2, …, Rm} the set of resource types

– request edge: Pi → Rj
– assignment edge: Rj → Pi

12

Example of a Resource Allocation Graphp p

13

Resource Allocation Graph With A Deadlockp

14

Resource Allocation Graph With A cycle but no
Deadlock

15

Basic Facts

• graph contains no cycles ⇒ no deadlock.
(i.e. cycle is always a necessary condition for deadlock)

• If graph contains a cycle ⇒• If graph contains a cycle ⇒

– if one instance per resource type, then deadlock.

– if several instances per resource type, then possibility of deadlock
• Thm: if immediate-allocation-method, then knot ⇒ deadlock.Thm if immediate allocation method, then knot ⇒ deadlock.

– Knot= strongly connected subgraph (no sinks) with no outgoing edges

16

Resource Allocation with Deadlock Avoidance

Requires a priori information available.
• e g : each process declares maximum number of resources of each type

Deadlock-avoidance algo:
• examines the resource allocation state

e.g.: each process declares maximum number of resources of each type
that it may need (e.g memory/disk pages).

• examines the resource-allocation state…
– available and allocated resources
– maximum possible demands of the processes.
t th i t ti l f i l it • …to ensure there is no potential for a circular-wait:
– safe state ⇒ no deadlocks in the horizon.
– unsafe state ⇒ deadlock might occur (later…)
– Q: how to do the safety check?

• Avoidance = ensure that system will not enter an
unsafe state.

Idea: If satisfying a request will result in an unsafe
state, the requesting process is suspended until
enough resources are free ed by processes that will

17

enough resources are free-ed by processes that will
terminate in the meanwhile.

Enhanced Resource Allocation Graph for Deadlock
AvoidanceAvoidance

• Claim edge Pi → Rj : Pj may request resource Rjg i j j y q j
– represented by a dashed line.

• Claim edge converts to request edge when a process requests a
resourceresource.

• When a resource is released by a process, assignment edge
reconverts to a claim edge.

• Resources must be claimed a priori in the system.

18

Example Resource-Allocation Graph For Deadlock
Avoidance: Safe StateAvoidance: Safe State

19

Example Resource-Allocation Graph For Deadlock
Av idance: Unsafe StateAvoidance: Unsafe State

20

Banker’s Algorithm for Resource Allocation with
Deadlock Avoidance Deadlock Avoidance

Allocation[i,j] = k:
Pi holds k instances of Rj

Max [i,j] = k:
P may request max k instances Pi holds k instances of RjPi may request max k instances
of resource type Rj.

Available [j] = k :
k instances of resource type Need [i,j] =
Rj are available.Max[i,j] – Allocation[i,j]:

potential max request by Pi
for resource type Rj

RECALL: Avoidance = ensure that system will not enter an unsafe state

yp j

RECALL: Avoidance = ensure that system will not enter an unsafe state.
Idea:
If satisfying a request will result in an unsafe state,
th ti i d d

21

then requesting process is suspended
until enough resources are free-ed by processes that will terminate in the

meanwhile.

Safety checking: More on Safe State

safe state = there exists a safe sequence <P1, P2, …, Pn> of
t i ti ll terminating all processes:
for each Pi, the requests that it can still make can be granted by

currently available resources + those held by P1 P2 Pi 1currently available resources + those held by P1, P2, …, Pi-1

• The system can schedule the processes as follows:y p
– if Pi ‘s resource needs are not immediately available, then it can

• wait until all P1, P2, …, Pi-1 have finished
bt i d d t l t i t • obtain needed resources, execute, release resources, terminate.

– then the next process can obtain its needed resources, and so
on.

22

Banker’s algorithm: Resource Allocation

For each new Requesti do /*Requesti [j] = k: Pi wants k instances of Rj. */
/* Check consequence if request is granted *// qu f qu g /

remember the current resource-allocation state;
Available := Available - Requesti;
Allocationi := Allocationi + Requesti;
Needi := Needi – Requesti;;
If safety check OK ⇒ the resources are allocated to P If safety-check OK ⇒ the resources are allocated to Pi.
Else (unsafe) ⇒

Pi must wait and i

the old resource-allocation state is restored;

23

Banker’s Algorithm: safety checkg y

• Work and Finish: auxiliary vectors of length m and n, respectively. y g p y
• Initialize:

Work := Available
Fi i h [i] f l f i 1 2 Finish [i] = false for i = 1,2, …, n.

While there exists i such that both (a) Finish [i] = false• While there exists i such that both
do

Work := Work + Allocationi

(a) F n sh [] false
(b) Needi ≤ Work.

Work Work Allocationi

Finish[i] := true

• If Finish [i] = true for all i, then the system is in a safe state
else state is unsafe

24

else state is unsafe

Very simple example execution of Bankers Algo
(snapshot 1)(p)

Allocation Max Need Available
 B B B B A B A B A B A B

P1 1 0 1 1 0 1 0 1
P2 0 0 1 1 1 1 2

• The system is in a safe state since the sequence < P1, P2> satisfies safety
criteria criteria.

A

B

25

Very simple example execution of Bankers Algo
(snapshot 2)(p)

Allocation Max Need Available
 B B B B A B A B A B A B

P1 1 0 1 1 0 1 0 0
P2 0 1 1 1 1 0 2

• Allocating B to P2 leaves the system in an unsafe state since there is no
sequence that satisfies safety criteria (Available vector is 0 !) sequence that satisfies safety criteria (Available vector is 0 !).

A

B

26

Roadmap: 3rd station

• Allow a deadlock state and then recover GO BACK• Allow a deadlock state and then recover
YOU HAVE COME

WRONG WAY

27

Deadlock Detection & Recovery

• Detection algorithm:
h t did f h ki f t i h d h – what we did for checking safety in enhanced graph, can serve

for checking no-deadlock in the resource allocation graph
• Using resource-allocation graphsg g p
• Using Banker’s algo idea

• Need also: Recovery scheme

28

Deadlock Detection

Note:Note:
• similar as detecting unsafe states using Banker’s algo
• Q: how is similarity explained?

Q: if they cost the same why not use avoidance instead of • Q: if they cost the same why not use avoidance instead of
detection&recovery?

Data structures:Data structures:
• Available: vector of length m: number of available resources of each

type.
• Allocation: n x m matrix: number of resources of each type currently • Allocation: n x m matrix: number of resources of each type currently

allocated to each process.
• Request: n x m matrix: current request of each process. Request

[ij] = k: Pi is requesting k more instances of resource type Rj[ij] = k: Pi is requesting k more instances of resource type Rj.

29

Detection-Algorithm Usage

• When, and how often, to invoke:
• We don’t want to be too late to detect:
• Be there before this:
• Hence think• Hence think

– How often a deadlock is likely to occur?
– How many processes will need to be y p

rolled back?

R If l ith i i k d bit il • Reason: If algorithm is invoked arbitrarily,
– there may be many cycles in the

resource graph ⇒ we would not be able g p
to tell which of the many deadlocked
processes “caused” the deadlock.

30

Recovery from Deadlock:
(1) Process Termination(1) Process Termination

• Abort all deadlocked processesAbort all deadlocked processes.
• Abort one process at a time until deadlock is eliminated.
• In which order should we choose to abort? Criteria?

– effect of the process’ computation (breakpoints &
rollback) rollback)

– Priority of the process.
– How long process has computed, and how much longer to

completioncompletion.
– Resources the process has used/needs to complete.
– How many processes will need to be terminated.

31

Recovery from Deadlock:
(2) Resource Preemption(2) Resource Preemption

• Select victim and rollback – return to some
safe state restart process from that state safe state, restart process from that state
– Must do checkpointing for this to be

possible.
• Selection criteria

• minimize cost.
t h f t ti • watch for starvation – same process may

always be picked as victim, include number of
rollbacks in cost factor.

32

Resource Allocation & Handling of Deadlocks?

I th bl d t d th t d dl k • Ignore the problem and pretend that deadlocks
never occur in the system
– (can be a “solution” sometimes?!…)
– With the increased popularity of embeded OS this gets

less popular

33

Combined Approach to Deadlock Handling

• Combine the three basic approaches (prevention, avoidance, pp p
detection), allowing the use of the optimal approach for each
type of resources in the system:
– Partition resources into hierarchically ordered classes Partition resources into hierarchically ordered classes

(deadlocks may arise only within each class, then)
– use most appropriate technique for handling deadlocks

i hi h l within each class, e.g:
• internal (e.g. interactive I/O channels): prevention by

ordering
• process resources (e.g. files, main memory): avoidance by

knowing max needs, prevention by preemption
• swap space (blocks in disk, drum, …): prevention by swap space (blocks in disk, drum, …) prevention by

preallocation (all the loan in advance)

34

RA & Deadlock Handling in Distributed Systems

N li d l h !• Note: no centralized control here!
– Each site only knows about its own resources
– Deadlock may involve distributed resourcesDeadlock may involve distributed resources

35

Resource Allocation in Message-Passing Systems

Deadlock Prevention (recall strategies: no cycles; request all
resources at once; apply preemptive strategies) (apply in gen din phil)resources at once; apply preemptive strategies) (apply in gen. din.phil)

• using priorities/hierarchical ordering of resources
– Use mutex (each fork is a mutex, execute Rikart&Agrawala for each)g

• No hold&wait:
– Each process is mutually exclusive with both its neighbours => each

group of 3 neighbours is 1 Rikart&Agrawala ”instance”group of 3 neighbours is 1 Rikart&Agrawala instance
• No Preemption – If a process holding some resources requests

another resource that cannot be immediately allocated, it releases
th h ld d h t t th i the held resources and has to request them again
– risk for starvation
– cf optional reference, StyerPeterson-ACM-PODC89 (not included in study

i l) l f idi imaterial) algo for avoiding starvation.

36

Distributed R.A. with Deadlock Avoidance
or Deadlock Detection&Recoveryor Deadlock Detection&Recovery

• Centralized control – one site is responsible for safety check or
deadlock detectiondeadlock detection
– Can be a bottleneck (in performance and fault-tolerance)

• Distributed control – all processes cooperate in the safety check
 d dl k d t ti f ti or deadlock detection function

– need of consistent global state
– straightforward (expensive) approach: all processes try to learn

l b l global state
– less expensive solutions in the literature tend to be complicated

and/or unrealistic

• Distributed deadlock avoidance or detection&recovery
has not been very practicalhas not been very practical
– Checking global states involves considerable processing

overhead for a distributed system with a large number of
processes and resources

37

processes and resources
– Also: who will check if procs are all blocked?!

Roadmap

Done: classics in synchronization, resource allocation

NE ff l h NEXT: efficiency in multiprocessor synchronization, some
“extras”

38

