
Computer and OS System Overview

Introduction

• A computer system consists of
– hardware– hardware
– system programs

application programs
2

– application programs

Operating Systemp g y

• Provides a set of services to system users (collection
of service programs)

• Shield between the user and the hardware

• Resource manager:
– CPU(s)
– memory and I/O devices

• A control program
– Controls execution of programs to prevent errors and

3

Controls execution of programs to prevent errors and
improper use of the computer

Operating System Definition (Cont)

• No universally accepted definitionNo universally accepted definition
• “Everything a vendor ships when you order an

operating system” is good approximationoperating system is good approximation
– But varies wildly

“Th i ll i h • “The one program running at all times on the
computer” is the kernel. Everything else is
i h (hi i h h either a system program (ships with the

operating system) or an application program

Computer system overview:
starting from 0starting from 0

Basic functionality of a computer system: Basic functionality of a computer system:
Instruction Cycle

5

Parenthesis:
A closer-to-reality-view of todays’ processors

(a) A three-stage pipeline(a) A three stage pipeline
(b) A superscalar CPU
(c) Multicore CPUs

6

Basic Elements of a Computer Systemp y

• Processor + registers
M i M (“ l” • Main Memory (“real” or
primary memory)
– volatile

• I/O modules
– secondary memory

d idevices
– communications

equipmentq p
– terminals

• System bus
– communication among

processors, memory,
and I/O modules

7

Registers: 1. User-Visibleg

• May be referenced by machine lang.
– By both application and system y th app cat n an y t m

programs
• Enable programmer to minimize main-

memory references by optimizing m m y f y p m g
register use

• Types of user-visible registers• Types of user-visible registers
– Data
– Address

• Index: for indexed addressing,
offset

• Stack pointer: for procedure calling

8

Registers: 2. Control and Statusg
• Used by

– processor to control executionp
– operating-system to control the

execution of programs

• Basic C&S registers:
– Program Counter (PC)

C nt ins th dd ss f n • Contains the address of an
instruction to be fetched

– Instruction Register (IR)
Contains the instruction most • Contains the instruction most
recently fetched

– Program Status Word (PSW)
• condition codes (positive/negative/ • condition codes (positive/negative/

zero result, overflow, …)
• Interrupt enable/disable
• Supervisor/user mode

9

• Supervisor/user mode

Instruction Cycle revisity

• Processor fetches instruction from memory
– Program counter (PC) holds address of instruction to be r gram c unt r () h a r f n truct n t

fetched next; PC is incremented after each fetch
– Fetched instruction is placed in the instruction register

• Types of instructions
– Processor-memory

Processor I/O– Processor-I/O
– Data processing
– Control: alter sequence of executionq

10

Is that enough for

• Components of a simple personal computer

11

Interrupts!p

• An interruption of the normal sequence of • An interruption of the normal sequence of
execution! Why?
– Something went wrong (div by 0 reference – Something went wrong (div. by 0, reference

outside user’s memory space, hardware failure,…)
– Timer
– I/O

• and then?
– Interrupt handler takes control:

• a program that determines the nature of the p g
interrupt and performs whatever actions are
needed

• generally part of the operating system
12

• generally part of the operating system

Interrupt Cyclep y

• Processor checks for interrupts
If i t t f t h th t i t ti f th • If no interrupts fetch the next instruction for the
current program
If an interrupt is pending suspend execution of the • If an interrupt is pending, suspend execution of the
current program, and execute the interrupt handler

13

Control flow with interrupts

14

What happens

(a) (b)

(a) Steps in starting an I/O device and getting interrupt

(a) (b)

15
(b) How the CPU is interrupted

Interrupts as support for I/O

Note:
• Interrupts allow the processor to execute other Interrupts allow the processor to execute other

instructions while an I/O operation is in progress
• Improve processing efficiency

16

Interrupt-Driven I/Op

• Processor is interrupted when I/O
d l d t h d tmodule ready to exchange data

• Processor is free to do other work
N dl • No needless waiting

BUT:
• Still consumes a lot of processor p

time because every word read or
written passes through the
p c ssprocessor

How about using DMA …

17

I/O using Direct Memory Access (DMA)g y

• The processor is only involved at
th b i i d d f th the beginning and end of the
transfer
– Processor grants I/O (DMA) module – Processor grants I/O (DMA) module

authority to read from or write to
memory a block of data

– An interrupt is sent when the task is
complete

• Processor is free to do other
thingsthings

18

Multiple Interruptsp p

Q: To interrupt an interrupt?

1. Sequential Order: after
interrupt handler completes,

 h k f dditi l processor checks for additional
interrupts

2. Priorities: High priority
interrupts:

• cause lower-priority cause lower priority
interrupts to wait

– cause a lower-priority
interrupt handler to be interrupt handler to be
interrupted

– Example: when input arrives
from communication line it

19

from communication line, it
needs to be absorbed quickly
to make room for more input

Cache Memoryy

• Increase the speed of memory
– Processor speed is higher than memory speed

Hit: the information was in cache; else, miss
• Invisible to operating system

20

Cache Design: Important issuesg p

1. Cache size
2 Block size2. Block size
3. Mapping function
• determines which cache location the

block will occupypy
4. Replacement algorithm
• determines which block to replace

(e.g. Least-Recently-Used (LRU)
algorithm)algorithm)

5. Write policy
• Can occur every time block is updated
• Can occur only when block is replacedCan occur only when block is replaced

– Minimizes memory operations
– Leaves memory in an obsolete

state

21

Memory Hierarchyy y

Going Down the Hierarchy
• Increasing capacity, Increasing access

time
• Decreasing cost per bit Decreasing Decreasing cost per bit, Decreasing

frequency of access of the memory
– locality of reference: during program

execution memory addresses tend to execution memory addresses tend to
cluster (iteration loops, subroutines, …)

22

How a Modern Computer WorksH w M mp W

Computer Hardware Review

24Structure of a large Pentium system (Fig,
from Modern OS, A. Tanenbaum)

Symmetric Multiprocessing Architecture

A Dual-Core DesignD D g

Operating System Overview

Layers of Computer Systemy p y

28

Operating System – OS objectivesp g y j

• Provides services to system
users Convenienceusers

Shield between the user and

• Convenience
– Makes the computer more

convenient to use• Shield between the user and
the hardware • Efficiency

– Allows computer system

• Resource manager:
– CPU(s)

resources to be used in an
efficient manner

• Ability to evolveCPU(s)
– memory and I/O devices

• Ability to evolve
– Permit introduction of new

system functions without
• A control program

– Controls execution of programs
 d i

interfering with service

29
to prevent errors and improper
use of the computer

Services Provided by the Operating Systemy p g y

• Program execution:
CPU h d li () ll ti d t – CPU scheduling, resource (memory) allocation and management,
synchronization

• Access to I/O devices
f f h d d l (d k h d l)– Uniform interfaces, hide details, optimise resources (disk scheduling)

• Controlled access to files
– And structure of data

• System/resource access
– Authorization, protection, allocation

• Utilities, e.g. for program development
– Editors, compilers, debuggers

E d i d h • Error detection and response, when, e.g.
– hardware, software errors
– operating system cannot grant request of application

30
• Monitoring, accounting

Operating System: … (roughly) it is a program …p g y g y p g

• relinquishes
control of the control of the
processor to
execute other
programs

OS K lOS Kernel:
• (roughly) portion

of OS that is in of OS that is in
main memory

• Contains most-
frequently used
functions

31

Basic OS structures: intro in historical order

• Hardware upgrades, new types of hardware, enabled
f tfeatures

• New services, new needs

32

Basic OS structures: intro in historical order
1 before the stone age1. before the stone age

Serial Processing
• No operating system
• Machines run from a console with display lights and

l h d d toggle switches, input device, and printer
• Schedule tome
• Setup included

– loading the compiler, source program,
s in mpil d p m– saving compiled program

– loading
– linkinglinking

33

Basic OS structures: intro in historical order
2 first “tools” appear2. first tools appear

Simple Batch Systems:Simple Batch Systems:
• Monitors

– Software that controls the running Software that controls the running
programs

– Batch jobs together
– Program branches back to monitor

when finished
– Resident monitor is in main memory Resident monitor is in main memory

and available for execution
• Job Control Language (JCL)

– Provides instruction to the monitor
• what compiler to use
• what data to use

34

• what data to use

H/W features which made the first tools possible:p

• Memory protection
– do not allow the memory area containing the monitor to be

altered
• Priviledged instructions• Priviledged instructions

– Only for monitor, e.g. for interface with I/O devices

• Interrupts p
– Mechanisms for the OS to relinquish control and regain it

• Timer
– prevents a job from monopolizing the system

35

Basic OS structures: intro in historical order
2 Uni/multi programming2. Uni/multi-programming

from uniprogramming….p g g
Processor must wait for I/O instruction to complete

before proceeding

… to Multiprogramming
When one job needs to wait for I/O, the processor j f , p
can switch to the other job

36

Early batch system

– bring cards to 1401bring cards to 1401
– read cards to tape
– put tape on 7094 which does computing

37

put tape on 7094 which does computing
– put tape on 1401 which prints output

Basic OS structures: intro in historical order
2 5: Multiprogramming Time Sharing2,5: Multiprogramming, Time Sharing

Ti h i l i i h dl Time sharing systems use multiprogramming to handle
multiple interactive jobs
P ss ’s ti is sh d lti l s s• Processor’s time is shared among multiple users

• Multiple users simultaneously access the system
through terminalsthrough terminals

Batch Multiprogramming Time Sharing

Principal objective Maximize processor use Minimize response time

Source of directives to
operating system

Job control language
commands provided with the
job

Commands entered at the
terminal

38

Basic OS structures: intro in historical order
(2 & 2 5) multiprogramming needs(2 & 2,5) multiprogramming needs …

• … memory management!

39

Summary: evolution

• First generation 1945 - 1955
– vacuum tubes, plug boards

• Second generation 1955 - 1965Second generation 1955 1965
– transistors, batch systems

• Third generation 1965 1980• Third generation 1965 – 1980
– ICs and multiprogramming

• Fourth generation 1980 – present
– personal computersp p

• More contemporary present:
– Personal computers become parallel

40

– Personal computers become parallel,
portable/embedded OS’s

Basic OS structures: intro from service
i t f ipoint of view

Zooming in a few key servicesg y

The main job of OS is to: m j f
run processes! ...

41

Process:the conceptp

Process = a program in execution

• Example processes:
– OS kernel
– OS shell

Program executing after compilation– Program executing after compilation
– www-browser

• What do processes do? What do they need?

42

Processes create other processesp

A t• A process tree
– A (e.g. shell) created two child processes, B g p

(e.g. browser) and C (print)
– B created three child processes, D, E, and

43

 cr at thr ch proc ss s, D, E, an
F (various browser services/windows)

Processes need… to get memoryg m m y
Memory Management
Important issues:
• Process isolation

– Prevent interference between different processes
– Protection and access control when sharing memory
ll• Allocation

– Create, destroy modules dynamically
Support for modular programming– Support for modular programming

– Efficiency, good utilization

44

Virtual Memoryy

• Allows programmers to address memory from a logical
point of view (without worrying about the physical point of view (without worrying about the physical
availability/location)

• Transfer memory ↔disk: transparent to the Transfer memory ↔disk transparent to the
processes

45

(processes also need) …, to get CPU time and
other resources other resources, …

Goals when allocating resources to processes:
F i ss d Diff ti l s si ss• Fairness and Differential responsiveness
– give fair access to all processes
– Allocate to different classes of jobs accordinglyAllocate to different classes of jobs accordingly

• Efficiency
– maximize throughput, minimize response time, and max m ze throughput, m n m ze response t me, and

accommodate as many users as possible

46

... synchronization, communication...... y , mm ...

More: mutual exclusion, producer-
 i l d d t t k consumer, signal upon dependent tasks,

dealing with/preventing/avoiding g p g g
deadlocks …

47

..., to do IO, access files,, , f , ...

Important issues:
- Organization of information
- Efficient access
- Memory management of IO

48
- drivers, interfaces

Protection and Securityy
• Protection – controlling access of processes or users

to resources defined by the OSto resources defined by the OS
• Security – defense of the system against internal and

external attacksexternal attacks
– Huge range, including denial-of-service, worms, viruses,

identity theft, theft of service
S t ll fi t di ti i h t • Systems generally first distinguish among users, to
determine who can do what
– User identities (user IDs, security IDs) include name and User dent t es (user Ds, secur ty Ds) nclude name and

associated number, one per user
– User ID then associated with all files, processes of that user

to determine access controlto determine access control
– Group identifier (group ID) allows set of users to be defined

and controls managed, then also associated with each process,
filefile

– Privilege escalation allows user to change to effective ID
with more rights

Process: Implementationp

Consists of three
components

• An executable programp g
• Associated data needed

by the programby the program
• Execution context of

the program

Execution
context
of the programthe program

– All the book-keeping
information the system

of the program

information the system
needs to manage the
process

50

p

Major Elements of an Operating System

OS = very
large piece large piece
of
software!

• User
interface

• User or

Components: decompose a problem into more manageable
subproblems (process manager file manager etc)

• User or
system
programs
make subproblems (process manager, file manager, etc)

• Bootstrap program activates OS kernel (permanent
)

make
direct use
of the OS
via system

51
system process)
– Shell (≠ kernel): program to let the user initiate processes

via system
calls

User Operating System Interface
Command Line Interface (CLI) or command interpreter

• Can be implemented in kernel, sometimes by systems programp , y y p g
• Sometimes multiple flavors implemented – shells
• Primarily fetches a command from user and executes it

G hi l U I t f U f i dl d kt• Graphical User Interface: User-friendly desktop
metaphor interface
– Usually mouse keyboard and monitor– Usually mouse, keyboard, and monitor
– Icons represent files, programs, actions, etc
– Invented at Xerox PARC

• Many systems now include both CLI and GUI interfaces
– Microsoft Windows is GUI with CLI “command” shell
– Apple Mac OS X as “Aqua” GUI interface with UNIX kernel

underneath and shells available
– Solaris is CLI with optional GUI interfaces (Java Desktop – Solaris is CLI with optional GUI interfaces (Java Desktop,

KDE)

Programmer OS interface: making a Programmer OS interface making a
system call

53

Programmer OS interface:Programmer OS interface:
making a system call, e.g:

Standard C Library Exampley p
• C program invoking printf() library call,

which calls write() system callwhich calls write() system call

Some System Calls

56

A stripped down shellpp w

while (TRUE) { /* repeat forever */
type_prompt(); /* display prompt */
read_command (command, parameters) /* input from terminal */

if (fork() != 0) { /* fork off child process */if (fork() ! 0) { / fork off child process /
/* Parent code */
waitpid(-1, &status, 0); /* wait for child to exit */

} l {} else {
/* Child code */
execve (command, parameters, 0); /* execute command */

}
}

57

System Programsy m g m
• System programs provide a convenient environment y p g p

for program development and execution. The can be
divided into:

Fil i l ti – File manipulation
– Status information
– File modificationFile modification
– Programming language support
– Program loading and execution
– Communications
– Application programs

M ’ i f h i i d fi d b • Most users’ view of the operation system is defined by
system programs, not the actual system calls

59

Operating System Design and Implementation

• Internal structure of different Operating Systems
 id lcan vary widely

• Start by defining goals and specifications
ff d b h f h d f • Affected by choice of hardware, type of system

• User goals and System goals
U l h ld b – User goals – operating system should be convenient to use,
easy to learn, reliable, safe, and fast

– System goals – operating system should be easy to design, System goals operat ng system should be easy to des gn,
implement, and maintain, as well as flexible, reliable, error-
free, and efficient

Traditional UNIX System Structure

Issues in Modern Operating Systemsp g y

• Microkernel architectureM crokernel arch tecture
– Only few essential functions in kernel; OO design

• Multithreading
A pr cess may c nsist f several sequential threads f – A process may consist of several sequential threads of
execution

• Concurrent computer systems
 l – Symmetric multi-processor systems

– Multi-threaded/multicore processors
– Distributed systems y

• provide the illusion of a single main memory and single
secondary memory space in cluster-based platforms

• Real-time Operating Systemsp g y
– For time-critical applications, multimedia, …

• Embedded Operating Systems
– Constraints: limited resources special functionalities

62

Constraints: limited resources, special functionalities

Microkernel

• Small OS core; contains only essential OS functions:m ; y f
– Low-level memory management (address space mapping)
– Process scheduling
– I/O and interrupt managementI/O and interrupt management

• Many services traditionally included in the OS kernel are now
external subsystems

device drivers file systems virtual memory manager windowing – device drivers, file systems, virtual memory manager, windowing
system, security services

63

Benefits of a Microkernel Organizationg

• Uniform interface on request made by a process
– All services are provided by means of message passingAll services are provided by means of message passing

• Distributed system support
– Message are sent without knowing what the target machine is

• ExtensibilityExtensibility
– Allows the addition/removal of services and features

• Portability
– Changes needed to port the system to a new processor is changed in Changes needed to port the system to a new processor is changed in

the microkernel - not in the other services
• Object-oriented operating system

– Components are objects with clearly defined interfaces that can be p j y
interconnected

• Reliability
– Modular design;
– Small microkernel can be rigorously tested

64

Mac OS X StructureM X

Instantiation: Windows

Cli / • Client/Server
computing; base for
distributed computingdistributed computing

• Modified microkernel
architecturearchitecture
– not a pure microkernel:

many system functions
t id f th outside of the

microkernel run in kernel
mode

– modules can be removed,
upgraded, or replaced
without rewriting the

66

without rewriting the
entire system

Solaris Modular ApproachM pp

Virtual MachineM

• treats hardware and the operating system treats hardware and the operating system
kernel as though they were all hardware

d f d l h • provides an interface identical to the
underlying bare hardwarey g

• The operating system host creates the
illusion that a process has its own illusion that a process has its own
processor and (virtual memory)

• Each guest provided with a (virtual) copy
of underlying computerof underly ng computer

Virtual Machines (Cont)M ()

Non-virtual Machine Virtual Machine

Virtual Machines History and Benefits

• commercially in IBM mainframes ,1972
l i l i i (diff OS) • multiple execution environments (different OSs)

share the same hardware, protect from each
hother

• Some file sharing permitted, controlledg p
• Commutate with each other + other physical

systems via networkingy m g
• Useful for development, testing
• “Open Virtual Machine Format” standard format • Open Virtual Machine Format , standard format

of virtual machines, allows a VM to run within
many different virtual machine (host) platformsmany different virtual machine (host) platforms

Concurrent Computer Systems

each instruction
executed on a

a set of processors simultaneously
execute different instruction executed on a

different set of
data by the different
processors

execute different instruction
sequences on different data sets

71

Symmetric Multiprocessors and multicoresy p

• Processors share the same memory and I/Osy
• Kernel can execute on any processor
• Scheduling & synchronization, memory management &

 (l h)consistency (also research issues)

72

Cluster Computer Platformsp

• Network
• Middleware layer (part of OS) to provide

– single-system image (synchronization, consistency, global
states file systems)states, file systems)

– fault-tolerance, load balancing, parallelism

73

Open-Source Operating Systemsp p g y m
• Operating systems made available in source-

code format rather than just binary closed-
source

• Counter to the copy protection and Digital
Rights Management (DRM) movementg g ()

• Started by Free Software Foundation (FSF),
which has “copyleft” GNU Public License (GPL)which has copyleft GNU Public License (GPL)

• Examples include GNU/Linux, BSD UNIX
(including core of Mac OS X) and Sun Solaris (including core of Mac OS X), and Sun Solaris

Summarymm y
• OS: intermediary between user and hardware

– Execute programs in convenient + efficient manner
– Software that manages/interacts with the hardwareg

• Organization?
– Define goals, find methods/strategies to reach themDefine goals, find methods/strategies to reach them
– Work piece by piece

• We saw ”trailers” of the movies, we have
contextcontext.

• Next: piece by piece focus

75

