4BSD UNIX Virtual Memory

4BSD UNIX use a virtual memory with demand paging.

A global replacement policy and the clock (second
chance) algorithm is used.

The replacement algorithm is implemented by the
pageout daemon process.

Furthermore, there is a swapper process.

The pageout daemon and swapper processes are
executing in kernel mode but have its own process
structure and kernel stack to be able to use kernel
synchronization mechanisms such as sleep.

All physical memory available for paging is divided into
page frames.

There is a core map table (cmap) with one entry for
each page frame.

For a process to be executable its page table and
u-block need to be in main memory. Other pages are
fetched via a page fault the first time they are
referenced.

Page Replacement Algorithm

The clock algorithm is implemented by the pageout
daemon process.

A software clock hand repeatedly sweeps all entries in the
core map.

For each entry in the core map, the following is performed:

e |If the frame is unused, advance the clock hand to the
next entry.

e If I/O is active on the page, leave it as it is.

e [f the reference bit is set, reset it.

e If the the reference bit is reset (because the page have
not been referenced since last time the bit was reset),

release the page by entering it into free list. If the page
was modified it must first be written to the paging disk.



Clock Algorithm with two Clock Hands

e If a large main memory is used, the clock algorithm with

one hand do not work very well because the time to
scan all page frames is too large.

On some systems an algorithm with two clock hands is
used.

The first clock hand is used to reset the reference bit,
and the second clock hand releases pages with the
referenced bit still reset. (they have not been referenced
in the time span between the scan of the first and
second clock hands)

Page Replacement Algorithm

The goal for the pageout daemon is to assure that there
are a sufficient number of free frames available at all
times.

The pageout daemon is awakened every 250 ms by a
timeout to check that there is at least lotsfree (system
parameter) free page frames. If this is the case the
pageout daemon continues to sleep.

If the number of free frames is below lotsfree, the clock
hand will sweep a number of steps. How many steps
depends of the number of pages needed to reach
lotsfree free frames.

There is a maximum number of steps the pageout
daemon is allowed to sweep at one occasion. This is
adjusted so that the pageout daemon should not use
more than 10% of the CPU time.



Swapping

If it is discovered that the paging system is overloaded, the
swapper process will be started to swap out some
processes entirely (including page table and u-block).

The reason for using swapping is to try to avoid that the
system enters a thrashing condition.

The swapper process is started only if the following
conditions are fulfilled:

1. Load average is high (many processes in the ready
queue).

2. The number of free page frames is below a low value
minfree.

3. The average number of free frames is less than desfree.

(lotsfree > desfree > minfree).

Swapping

Swapout
The swapping algorithm worked as follows:

e If some process has been idle more than 20 seconds,
swap it out.

e Else select the one among the four biggest processes
that has been in main memory the longest time.

The algorithm is repeated until a sufficient number of
frames is available or no more candidate processes for
swapping can be found.

Swapin
with a few seconds interval, the swapper process will check
if some swapped out process can be swapped in again.

Only the page table and the u-block is brought in by the
swapper process. The pages are not fetched until they
generate a page fault.



Page Fault Handler

When a process references a page that is not in main
memory, a page fault is generated by hardware.

In principle the system will allocate a page frame for the
page, read it in from the paging disk and update the page
table so that the process can be restarted.

In some cases the page need not be fetched from the disk:

e If the page have been used earlier, it may remain
unmaodified in the free list. In this case the page can be
re-found by a hashing search. The page table is
updated and the process restarted.

e Pages in uninitialized data or stack areas do not need to
be fetched from disk. A free frame is allocated and
initialized with zeros, and the process is restarted.



