
Classification of Resources

• Sharable resources. Can be used by several users at the
same time.

→ Program code (if reentrant)
→ Data areas if read only.

• Non-sharable (exclusive) resources. Can only be used
by one user at a time.

→ Data areas that need to be written.
→ Most external devices like printers.
→ The processor.

1

Non-sharable Resources

• preemtable. Use of resource may be preempted and
restarted later on.

→ The processor
→ The primary memory

• non-preemptable

→ Printers. (A new document cannot be printed until the
previous is completed.)

2



Problems with Resource Administration

1. Deadlock - The processes may block each other. Nobody
can use the resource.

2. Starvation - Some process is prevented from using a
resource because there is always another (higher priority)
process that is using it.

Deadlock can only occur if the processes need more than 1
resource at the same time.

Starvation is possible in all resource allocation situations
unless a suitable policy is used to prevent it.

Starvation can be prevented by assigning the resources in
strict FIFO order or by increasing the priority for a process
that have been waiting for a long time.

3

Deadlock

Deadlock may arise if the following four conditions hold
simultaneously:

1. Mutual exclusion. Non-sharable resources are used.

2. Hold and wait. A process holds at least one resource and
requests another resource that is held by another process.

3. No preemption. Resources that a process holds, can
only be voluntarily released by the process itself.

4. Circular wait. A circular chain of processes exist, in
which each process holds a resource requested by the
next process in the chain.

4



Methods for Handling Deadlocks

• Deadlock prevention. Prevents deadlock by ensuring
that at least one of the four necessary conditions do not
hold.

• Deadlock avoidance. Tries to improve the resource
utilization by using a less stringent method than deadlock
prevention.

• Deadlock detection. Methods to detect that deadlock
has occurred .

• Deadlock recovery. Methods for recovery from deadlock.

5

Deadlock Prevention

Mutual exclusion.

Sharable recourses do not require mutual exclusion and do
not create deadlocks.

In general, avoiding mutual exclusion is not possible because
some recourses are intrinsically non-sharable.

6



Deadlock Prevention

Hold and Wait.

This condition can be prevented by requiring the processes to
request all resources at the same occasion.

A variant is that a process that want to allocate additional
resources first must release all resources that it already holds
and then request both the old and the new resources at the
same time.

Disadvantages:

• May lead to poor resource utilization.

• May create starvation.

7

Deadlock Prevention

No preemption.

The third condition can be prevented with the following
method:

If a process holds a resource and requests a new resource
that cannot be immediately allocated, then all resources
currently being held are preempted. The Process is restarted
first then both the new and the old resources are available.

This method is often applied to resources whose state can be
saved and restored as for example CPU registers and primary
memory. It cannot be used for nonpreemptable resources.

8



Deadlock Prevention

Circular Wait.

One way to ensure that this condition never holds is to
impose a total ordering on the resources. Every resource is
given a unique number. The resources must then be
requested in an increasing order of enumeration

In order to get good resource utilization, the resources should
be numbered in the same order that they are normally
needed.

9

Deadlock Avoidance

• If all four conditions for deadlock is met, deadlock can still
be avoided by using additional information about how
resources are to be requested.

• The most common method is that each process must
declare the maximum number of resources of each type
that it may need.

• The processes may demand new resources in an arbitrary
order.

• The resource allocator uses a deadlock avoidance
algorithm to evaluate each new resource application and
grants the allocation only if it leaves the system in a safe
state.

• The system is in a safe state, if the resource allocator can
guarantee that all processes will be completed.

10



Safe and Unsafe States

Assume that the system has 12 units of a resource.

A safe state.

current need maximum need

P0 1 4
P1 4 6
P2 5 8

Free: 2

An unsafe state.

current need maximum need

P0 1 4
P1 4 6
P2 6 8

Free: 1

11

Safe and Unsafe States

A system can go from a safe state to an unsafe state.

This stat is safe.

current need maximum need

P0 1 4
P1 4 6
P2 5 8

Free: 2

Assume that process P2 requests another resource and that
the request is granted. This results in this state.

current need maximum need

P0 1 4
P1 4 6
P2 6 8

Free: 1

This state is unsafe because there is only one free resource
and all processes may need at least 2 extra resources.

The mistake was to grant the last request from P2.

12



Banker’s Algorithm

Not all unsafe states are deadlocks, but an unsafe state may
lead to deadlock. As long as the state is safe the system can
avoid unsafe states (and deadlocks).

Banker’s algorithm is the most well-known deadlock
avoidance algorithm.

• The processes may demand new resources in arbitrary
order but must declare the maximum number of each
resource type that they may need.

• The system grants a new application only if it results in a
safe state.

• Otherwise, the process must wait until some other
process releases sufficiently many resources.

Problems with banker’s algorithm:

• There must be a fixed number of resources to allocate.
This may be difficult to meet since external resources may
break down and become unavailable.

• The algorithm requires that the processes state their
maximum resource needs. This is not always known.

13

Deadlock Detection

An alternative to preventing deadlock can be to detect
deadlock and then use some recovery method. Deadlock can
be detected with the aid of resource-allocation graphs.

If there only exists one resource of each type, deadlock has
occurred if there exists a loop in the resource-allocation
graph.

Reduction of resource-allocation graphs

• If the exists several resources of each type, a loop in the
graph need not mean deadlock.

• In this case, the method with reduction of the graph can
be used.

• If the resource requirements for a certain process can be
met, we say that the graph can be reduced with that
process. The reduced graph is the graph with this process
removed.

• If the graph can be reduced with all its processes there is
no deadlock. If certain processes cannot be reduced, a
deadlock exists and the the remaining loop in the graph
constitutes the deadlocked processes.

14



Detection Algorithm Usage

Although it is relatively simple to detect a deadlock by looking
at the graph, algorithms for deadlock detection are
computationally expensive.

An algorithm for detection of a loop in a graph has complexity
O(n2), there n is number of nodes in the graph.

When should we invoke the detection algorithm?

• Deadlock may occur each time a process makes a
resource request that cannot be granted immediately.

• In principle, one should therefore run the detection
algorithm at each such request.

• Due to the algorithm’s high complexity this will use to
much CPU time, if there are many processes.

• Therefore, a compromise is needed. How often to run the
algorithm is dependent on the judged risk for deadlock an
the consequence if deadlock do occur.

15

Deadlock Recovery
Unfortunately, no good method exists for deadlock recovery

The following methods are possible

Recovery through killing processes.

• Kill one or more processes until the deadlock cycle is
broken.

• The killed processes lose all calculated results and have
to be restarted.

• Processes that leave permanent changes in the file
system, may give incorrect result if they are restarted.

Recovery through preemption.

• With preemtable resources, one can temporary take
resources away from a process and give them to another
process, in order to resolve a deadlock.

• With non-preemptable resources this is equivalent to
killing the process.

Checkpointing

• If check points are used, only part of the process must be
rerun if it is killed.

• This must be programmed into the processes.

16



Deadlock handling in real systems

The handling of deadlock is different for different classes of
resources.

Different classes of resources:

• internal resources. For example data structures used by
the operating system.

• Primary memory and processors.
• External resources. Resources that may be allocated by

the processes, for example files.

Deadlock handling for different types of resources.

• Internal resources . In SMP systems, the data structure
locks have to be combined with a deadlock prevention
method. Usually the data structures are enumerated and
the processes required to lock them in enumeration order.

• Primary memory and processor. Deadlock can be
prevented through preemption since these resources are
preemptable.

• External resources. Most operating systems take no
measures for these resources.

17


