
Signals

Signals are used to inform a process that a certain event
have occurred.

Signals can be generated by:

• The keyboard
• Errors in a process (for example an incorrect memory

reference)
• Asynchronous events (for example a timer)
• The system call kill can be used to send all signals.
• Every time a process returns from a system call, it is

tested if a signal has arrived.

Default action for most signals is to terminate the process.

A process can use the system call sigaction to define an
alternative action for a certain signal:

• Signals can be ignored.
• A user written signal handler can be called.

1

Signals (cont.)

The kill signal (number 9) cannot be catched by a signal
handler or ignored.

If the kernel has lightweight processes, signal handling is
more complicated. The following options exist:

• Deliver the signal to the thread that caused it.
• Deliver the signal to all threads in the process.
• Deliver the signal to certain threads in the process.
• Deliver the signal to a specific thread.

Asynchronous signals (e.g. CTRL C) is handled by process
groups in UNIX/Linux and are sent to all relevant
threads/processes.

A thread (process) can use the system call sigprocmask, to
block certain signals.

2



Lightweight processes (threads)

• Normal processes have an own address space. Process
switching therefore requires change of address space and
takes relatively long time (magnitude 1000 instructions)

• In certain implementations, a process (task) contain
several threads (lightweight processes)

• All threads within a task has the same address space,
which means that they share global variables and it exists
no memory protection between them.

• Threads are scheduled according to same principle as
processes but since only registers, pc, and stack pointer
need to be changed, switching of threads is a lot quicker.

3

Advantages with threads

Reasons to have threads:

• Many program languages (e.g. Ada and Java) have
concurrent processes in the language. These processes
cannot be implemented as separate UNIX processes
since process switching takes to long time.

• If Ada processes are implemented as threads, they can
execute in parallel on a multiprocessor.

• Server processes need to await several events at the
same time. With the aid of threads, one can program such
processes with clean sequential code and blocking
system calls.

4



User level or kernel level threads?

Threads can exist both in user programs and in the operating
system.

The mapping between user level and kernel level can be
done in different ways:

• many-to -one
• one-to-one
• many-to-many

5

User implemented threads

An alternative to kernel implemented threads is to implement
them in user code as a library.

Advantages with user implemented threads:

• Do not need changes to the operating system.
• Faster process switching, as a trap to the operating

system is eliminated.
• Different applications can use different scheduling

algorithms.

6



User implemented threads (cont.)

Disadvantages with user implemented threads:

• If a thread makes a blocking system call, all threads in the
task will stop. This is unacceptable but unavoidable if
blocking system calls is the only alternative (which is
common). It can be solved in a clumsy way if there is a
separate system call to test if read will block.

• Implementation of preemptive scheduling (with signals) is
usually inefficient. Non-preemptive scheduling means that
a looping thread will stop all other threads in same task.

• Parallel execution of threads in a multiprocessor is not
possible.

7

Thread libraries

There exist a few libraries for programming with threads in C.

Pthreads Posix standard that now exists on most
UNIX/Linux systems.

Win32 threads C interface for threads in Win32 API. Similar
functionality as pthreads, but different syntax.

8



Kernel level lightweight processes

The support for lightweight processes is not standardized in
UNIX/Linux kernels.

Older UNIX systems did not have lightweight processes.

FreeBSD can create lightweight processes within an existing
process with the system call kse create. Processes that
share resources with their parent can be created with
rfork.

Linux cannot create threads within an existing process, but
can create processes with almost arbitrary resource
sharing with the system call clone.

Parameters to clone:

CLONE FS File system information is shared.
CLONE VM Memory is shared.
CLONE SIGHAND Signal handlers are shared.
CLONE FILES Open files are shared.

9


