
Virtual Machines

• Virtual machine technology, often just called
virtualization , makes one computer behave as several
computers by sharing the resources of a single
computer between multiple virtual machines .

• Each of the virtual machines is able to run a complete
operating system.

• This is an old idea originally used in the IBM VM370
system, released in 1972.

• The VM370 system was running on big mainframe
computers that easily could support multiple virtual
machines.

• As expensive mainframes were replaced by cheap
microprocessors, barely capable of running one
application at a time, the interest in virtualization
vanished.

• For many years the trend was to replace big expensive
computers with many small inexpensive computers.

• Today single microprocessors have at least two cores
each and is more powerful than the supercomputers of
yesterday, thus most programs only need a fraction of
the CPU-cycles available in a single microprocessor.

• Together with the discovery that small machines are
expensive to administrate, if you have too many of them,
this has created a renewed interest in virtualization.

1

Uses for Virtual Machines

There are several uses for virtual machines:

• Running several operating systems simultaneously on
the same desktop.

→ May need to run both Unix and Windows programs.
→ Useful in program development for testing programs

on different platforms.
→ Some legacy applications my not work with the

standard system libraries.

• Running several virtual servers on the same hardware
server.

→ One big server running many virtual machines is less
expensive than many small servers.

→ With virtual machines it is possible to hand out
complete administration rights of a specific virtual
machine to a customer.

2



Types of Virtual Machines

• Type 1 hypervisor (virtual machine monitor or VMM)

→ The type 1 hypervisor runs at the physical hardware and
is the real operating system.

→ Normal unmodified operating systems, like Linux or
Windows runs atop of the hypervisor.

• Type 2 hypervisor

→ A normal unmodified host operating system like Linux or
Windows runs on the physical hardware.

→ A type 2 hypervisor like VMware Workstation runs on
the host operating system.

→ A normal unmodified guest operating system is booted
in the type 2 hypervisor.

3

Virtual Machine Types

Type 1 hypervisor

Hardware

Linux

Linux app

Windows

Windows app

Kernel mode

User mode

Type1 Hypervisor

Type 2 hypervisor

Hardware

Host operating system (Linux)

Type 2 hypervisor

Guest OS (Windows)

Linux app

Windows app

Kernel mode

User mode

4



Requirements for Virtualization

The requirements for virtualization were formally described
by Popek and Goldberg in 1974.

“Formal requirements for Virtualizable Third Generation
Architectures”, Communications of ACM 17 (7), 1974.

Popek and Goldberg formulated three requirements for a
virtual machine monitor (VMM):

Isolation (safety) The VMM manages all hardware
resources. The client system is limited to its own virtual
space and is unable to determine that it is virtualized.

Equivalence (fidelity) Programs running on the VMM
executes identically to its execution on hardware with
exception for timing effects.

Performance A majority of guest instructions are executed
by the hardware without intervention of the VMM.

5

Requirements for Virtualization

Definitions used by Popek and Goldberg:

• Sensitive instructions are instructions that need to be
executed in kernel mode because they do I/O or for
example change the MMU settings.

• Privileged instructions are instructions that trap if
executed in user mode.

Popek and Goldberg found that for a processor architecture
to meet the requirements for virtualization:

1. A processor architecture must have both user and
kernel mode.

2. The set of sensitive instructions is a subset of the
privileged instructions.

• Expressed in a simpler way, if an instruction is executed
in user mode which is not allowed to execute in user
mode it should trap to kernel mode.

• Today the term classically virtualizable if often used
for an architecture that has this property.

• The IBM/370 processor had this property but the Intel
80386 did not have it.

6



Virtual Machine Implementation

Type 1 hypervisor

• The real operating system is the hypervisor, which runs
in kernel mode.

• The guest operating system runs in user mode
(sometimes called virtual kernel mode).

• All non sensitive instructions executed by the guest
execute in the normal way (but in user mode).

• When the guest operating system executes a sensitive
instruction, a trap occurs and the instruction is emulated
by the hypervisor.

→ If the machine have sensitive instructions that do not
trap in user mode, the emulation will not work making
virtualization impossible.

7

Virtual Machine Implementation

Type 2 Hypervisor

• Actually, it is possible to virtualize a machine that do not
meet the Popek and Goldberg requirements if the guest
executes on an interpreter instead of directly on the
hardware.

• Interpretation, however , would not meet the
performance criteria.

• Combining interpretation with a technique called binary
translation will however meet all requirements.

• This is how the x86 architecture which is not
classically virtualizable was actually virtualized by
VMware using a type 2 hypervisor.

8



Type 2 Hypervisor - VMware

• VMware runs as a normal user process atop of an
operating system such as Linux or Windows.

• The first time VMware is started, it acts like a newly
started uninstalled computer, expecting to find an
installation CD in the CD-ROM drive.

• The guest operating system is installed in the normal
way on a virtual disk (just a file in Linux or Windows).

• Once the guest operating system is installed, it can be
booted and run.

9

The working of VMware

• When VMware executes binary code from a guest
system, it first scans the code to find basic blocks .

• A basic block is a sequence of instructions terminated
by a jump, call, trap or other instruction that changes the
control flow.

• The basic block is inspected for sensitive instructions
and all such instructions are replaced by VMware
procedure calls that emulate the instruction.

• When these steps have been taken the basic block is
cached inside VMware and executed.

• This technique is called binary translation .

• The basic block ends with a call to VMware, that locates
the next basic block.

• All basic blocks that do not contain sensitive instructions
will run at the same speed as on a bare machine,
because they do run on a bare machine.

10



Paravirtualization

• Both type 1 and type 2 hypervisors works with
unmodified guest operating systems.

• An alternative strategy is to modify the guest operating
system, so that instead of executing sensitive
instructions it makes a procedure call to the hypervisor.

• The method using modified guest operating systems is
called paravirtualization .

• Paravirtualization can be used to solve the problem with
architectures that are not in compliance with Popek and
Goldberg but can also be used to improve performance
on architectures that are classically virtualizable.

• On architectures such as x86 with many operating
systems and many hypervisors, paravirtualization will
require a standardized API.

• A proposal from VMware is VMI (Virtual Machine
Interface).

→ A VMI library is implemented for each hypervisor. All
implementations present the same interface to the
guest OS but do different calls to the hypervisor.

• Another such interface is paravirt ops supported by
the Linux kernel developers.

11

X86 Hardware Virtualization

• In late 2005 Intel started to ship some of its x86
processors with VT (Virtualization Technology)
extensions.

• The primary goal with the VT extension was to bring
x86 into compliance with the Popek and Goldberg
criteria, making classical virtualization possible.

• The VT-x extensions introduce a new VMX mode of
operation with two new operating states: VMX root and
VMX guest.

• The root state is intended for the hypervisor and the
guest state is for a guest OS.

• Both root and guest state support all the original
privilege levels, making it possible to run a guest OS at
its intended privilege level.

• A new Virtual Machine Control Structure VMCS
specifies the behavior of some instructions in VMX
mode.

→ In VMX mode all sensitive instructions will trap if
executed in guest state.

• The processor boots with VMX mode disabled. To
activate VMX mode a new vmxon instruction is executed
and a vmxoff instruction will terminate VMX mode.

• AMD have added similar virtualization extensions to
their processors, called AMD-V.

12



Memory Virtualization

• Virtualized operating systems not only share the CPU;
they also have to share virtual memory and I/O devices.

• Unfortunately virtualization greatly complicates
management of virtual memory.

Example:

• Assume that a guest OS want to mmap virtual pages 3,
4 and 5 to physical pages 10, 11 and 12.

• It will build page tables for this mapping and point a
register to the top level page table.

• This instruction is sensitive and will trap on a VT
enabled CPU.

• The hypervisor can now allocate physical pages 10, 11
and 12 and set up the page tables to map the guest’s
pages 3, 4 and 5 to them.

• Now suppose that another guest OS starts and maps its
virtual pages 6, 7 and 8 to physical pages 10, 11 and
12.

• Now the hypervisor cannot use this mapping because
physical pages 10, 11 and 12 are already in use. It have
to find some other free pages and modify the page
tables to use them.

• In general, for each guest the hypervisor will have to
manage a shadow page table .

13

Memory Virtualization, cont.

• Every time a guest OS changes a page table the
hypervisor must change the shadow page tables.

• The trouble is that the guest page tables reside in
normal memory. No sensitive instruction is needed to
write in these pages and no trap to the hypervisor will
occur.

A trick is needed to solve this problem:

• When the hypervisor creates the page tables for the
guest, it will mark all memory that contain the page
tables as read-only.

• Now any attempt from the guest to write in its page
tables will generate a protection fault and give control to
the hypervisor.

• Doing some complicated analysis, the hypervisor will be
able to determine that this was an attempt to update a
page table and it will update the shadow page tables
accordingly.

• A paravirtualized guest is in a much better position
here. It will know that it is virtualized and will do a
procedure call to inform the hypervisor that it has
changed its page table. This is more efficient than
generating lots of protection faults an have the
hypervisor guessing what is going on.

14



Hardware support for Memory Virtualization

• For a few years AMD have shipped processors with
hardware support for memory virtualization.

• The AMD virtual memory support for virtual machines is
called NPT (Nested Page Tables).

• Also Intel has announced virtual memory hardware
support called EPT (extended page tables).

• In processors with NPT another level of translation is
added in the hardware MMU.

→ The guest page table converts between guest virtual
address and guest physical address.

→ A new nested page table under control of the
hypervisor converts between guest physical address
and system physical address.

• Using NPT the guest OS will be in full control of its page
tables.

• The price to pay for this is that the translation takes
more time than with the original hardware and that the
caching of the translations in the TLB is less efficient.

15

I/O Virtualization

When virtualizing I/O devices, at least the following
interactions between software and devices must be
handled:

Device discovery: A method must be provided for the
guest OS to find out which I/O devices are present.

Device control: Special I/O instructions or memory
mapped registers can be used. I/O instructions are
sensitive and will trap but memory mapped registers are
not sensitive unless read/write protected.

Data transfers: Most devices use DMA which in most
cases uses absolute physical addresses. The guest OS
will however use guest physical addresses which need
to be translated by the hypervisor for DMA to work.

I/O interrupts: A method is needed to relay interrupts for
guest initiated data transfers to the guest.

16



I/O Virtualization

• A common way for a hypervisor to handle I/O devices is
by emulation .

• The hypervisor implements a software model of the I/O
device including all the control registers.

• If the device use memory mapped I/O, the memory
addresses for the emulated registers must be protected
by the hypervisor to make operations on them trap.

• The guest OS will believe that it is talking to a hardware
device, when in fact it is communicating with a software
model.

• The hypervisor may be accessing a real hardware when
emulating the device, but the emulated device may be
different from the hardware device. For example an IDE
disk may be emulated while the real hardware is a SATA
disk.

• Using emulation, the hypervisor can present many more
devices to the guest systems than are physically
present on the machine.

• A type 2 hypervisor will use the device drivers in the
host OS to access the real hardware devices while a
type 1 hypervisor will need to develop its own device
drivers for all hardware that are present on the machine.

• The disadvantage with emulation is that performance
suffers when every operation on an I/O register will
generate a timeconsuming trap to the hypervisor. Here
paravirtualization can give much better performance.

17

Hardware support for I/O Virtualization

• The use of DMA is a problem with virtual machines
because a DMA controller is able to write to the entire
physical memory, not just the memory assigned do a
single guest OS.

• For this reason a guest OS is not allowed to handle the
DMA controller itself, but must call for the hypervisor to
do it.

• To solve this problem both AMD and Intel have added
IOMMU:s (I/O Memory Management Unit) to some
recent processors.

• An IOMMU will use a translation technique similar to a
virtual memory page table to translate between guest
physical addresses and absolute physical addresses.

• The IOMMU will also restrict which physical addresses
a device may access.

• Using an IOMMU a guest OS may be allowed to
initialize a DMA transfer itself, however a call to the
hypervisor is needed to set up the IOMMU mapping.

• Like a virtual memory system needs a TLB (Translation
Lookaside Buffer) to get reasonable performance, an
IOMMU will need an IOTLB.

18



Some Existing Virtual Machine Softwares

• VMware Workstation, WMware Player, WMware server

→ Type 2 hypervisor using binary translation
→ VMware Workstation 6.0 also supports

paravirtualization (VMI)
→ Proprietary, Free download for Player and server
→ Host and guest CPUs: X86, AMD64
→ Host OS: Windows and Linux

• QEMU

→ Emulator using dynamic recompilation
→ Open source
→ Many different host and guest CPUs
→ Host OS: Linux, Mac OS X, Solaris, FreeBSD,

OpenBSD, Windows

• KQEMU

→ Linux kernel module to accelerate QEMU
→ Type 2 hypervisor using dynamic recompilation
→ Host and guest CPUs: x86 and x86-64
→ Host OS: Linux (experimental versions for FreeBSD

and Windows XP)

19

Some Existing Virtual Machine Softwares,
Cont.

• Virtualbox (Sun)

→ Type 2 hypervisor
→ Partially based on QEMU
→ Both open source and proprietary versions (free

download)
→ Host and guest CPUs: x86 and x86-64
→ Host OS: Windows, Linux, Mac OS X, Solaris

• Xen

→ Type 1 hypervisor
→ Open source
→ Host CPUs: x86 with Intel VT, AMD64 with AMD-V
→ Host OS: Linux. FreeBSD, Solaris
→ Runs on any x86 processor with Linux and FreeBSD

using paravirtualization

20


