
Network File System - NFS

• NFS is a distributed file system (DFS) originally
implemented by Sun Microsystems.

• NFS is intended for file sharing in a local network with a
rather small number of computers.

• NFS is both a specification and an implementation of a
DFS. Today three versions exist of the specification -
version 2, version 3, and version 4.

• The text in the course book is based on v2 (and v3) of
the specification. Implementation dependent parts are
based on the Solaris implementation.

• Every machine may be both client and server.

• In order to make files on other machines available, a
mount operation is needed.

• Information about a mounted file system is only stored
on the clients, not on the server.

1

NFS Specification

• The NFS specification distinguishes between the
services provided by the mount mechanism and the
remote file access services.

• Two different protocols are specified - one protocol for
mounting and one protocol for performing file operations
- the NFS protocol.

• The protocols are specified as sets of RPC:s.

• NFS is required to work also if the client and the server
has different processor architectures.

• The RPC routines use a coding called XDR (External
Data Representation) to code data sent across the
network in a way that is independent of the memory
architecture (big-endian versus little-endian).

• Network data is sent using UDP in NFS v2. NFS v3 also
allows the use of TCP.

• Because the XDR-interface also is implementation
independent, all file system code above the XDR level is
independent of the actual network.

2



The Mount Protocol

• The mount protocol is used to mount a directory from
another machine in the local file system tree.

• A mount operation includes the name of the remote
directory to be mounted and the name of the server
machine.

• The server maintains an export list (/etc/exports) that
specifies which filesystems may be exported and which
machines that are permitted to mount them.

• The server returns a file handle to the client. This file
handle serves as a key for further accesses to the
mounted file system.

• For UNIX file systems the file handle consists of a file
system identifier and an inode number for the mounted
directory.

• Usually the clients use a static mounting configuration,
specified in the file /etc/fstab.

3

The NFS Protocol

The NFS protocol provides a set of RPC:s for remote
operations.

The procedures support the following operations:

• Searching for a file in a directory

• Reading a set of directory entries

• Manipulating links and directories

• Accessing file attributes

• Reading and writing files

Open and close are not included because NSF use a
stateless server.

NFS requests do include a sequence number that is stored
on the server and used to detect duplicated request. This
status information do not invalidate the stateless property
because it is only considered as a hint and is not restored
after a server crash.

File locking is not part of NFS but is provided as a separate
service.

4



The NFS Protocol

• The RPC routines are blocking, that is they do not
return until the requested service is completed.
Together with a stateless server this have the effect that
a write operation cannot be completed until the data is
written to the server disk.

• This mode of operation can give very bad write
performance.

• NFS v3 also specifies an asynchronous write mode.
This mode trades better write performance against an
increased risk for corrupted files.

• The NFS RPC procedure calls may contain 8 Kbyte of
data and are supposed to be atomic.

• A problem is that the Ethernet data size limit of 1500
bytes forces the packets to be fragmented at the IP
level. If UDP is used there is no error handling below
the UDP level, thus if a single fragment is lost all 8 KB
have to be retransmitted. This is the main reason why
TCP is in fact a better choice than UDP.

• NFS v2 have no other access control than the file
handle and an UID included in the datagrams (all sent
in clear text). The use of UID:s means that the client
and server must use common UID:s. The root UID is
not accepted but translated to nouser.

5

NFS Architecture

The NFS architecture consist of three levels:

1. The UNIX file system interface with the system calls
open, close, read and write.

2. The Virtual File System (VFS) level.

(a) Directs the call to the correct file system
implementation.

(b) Based on a data structure called vnode .

3. The local file system or the NFS-interface.

6



Remote Operations

• In principle all RPC operations result in communication
with the server. In reality caches are used to improve
performance.

• Note that only the server is stateless. The clients are
not and may use arbitrary caching strategies.

• There are two caches in the clients. One for file
attributes (inode information) and one for data blocks.

• The data block cache normally uses a delayed-write
strategy for writing.

• The effect of this is that UNIX semantics are not
preserved nor do it follow any other easily defined
consistency semantics. New files created by one
machine may not be visible to other machines for 30
seconds.

7

Andrew File System - AFS

• Developed at Carnegie Mellon University with start
1983.

• A commercial version was developed by Transarc
Corporation, which was subsequently acquired by IBM.

• In 2000 IBM terminated the commercial version of
Transarc DFS, and made the source available as an
open-source product, termed OpenAFS.

8



AFS

• Designed to make it possible for 5000 workstations to
share a common filesystem.

• The file system tree have a local part and a shared part.
The local part is the root file system. The shared file
system is located under a certain directory in the local
file system.

• Every client need to have a local disk memory to store
the root file system and also used for caching.

• Dedicated file server machines collectively called vice
are used.

• The file server machines cooperate to present the
clients with a common location independent file system
tree that looks alike at all clients.

9

AFS

• Viewed at a finer granularity, clients and servers are
structured in clusters interconnected by a WAN.

• Each cluster consists of a number of workstations on a
LAN and a cluster server . Each cluster server is
connected to the WAN by a router.

• The reason for this decomposition is to make the system
scalable. For best performance the clients should use
the server on their own cluster most of the time.

10



AFS

A few other design issues:

Security

• Because vice are executed on dedicated servers and no
client programs are executed on the servers, the
security of the files can be guaranteed provided that a
secure communication protocol is used.

• This requires an authentication process there both the
client and the server identity is verified. The
authentication is based on encryption and built into the
RPC package.

• All data sent between the client and the server are
encrypted.

Protection

• In addition to the traditional UNIX file access bits AFS
have access control lists.

11

AFS

The shared name space

• The shared file system is made up of component units
called volumes. A volume is rather small and typically
contains the files for a single user.

• Internally vice identifies a file with a position
independent file identifier called a fid . A fid is 96 bits
long and consists of volume number, vnode number and
uniquifier. The vnode number is unique within a volume.
The uniquifier allows reuse of vnodes.

• The volume number itself do not tell where the volume
is stored.

• The current location of a volume is found in the
volume-location database replicated at every server.

• This organization makes it possible to move a volume to
another server while she system is running without
disturbing the clients.

12



AFS

Caching and consistency semantics

• AFS uses disk caches at the clients and caches in
chunks of 64 kBytes.

• Session semantics is used. The operating system on
each client intercepts file-system calls and forwards
them to a user level process, called Venus. Venus
caches files when they are opened and writes them
back to the server when they are closed.

• Read and write operations use the local cache.

• To keep the caches consistent a server initiated strategy
called callback is used. The server keeps status
information about which clients have a file cached. If the
file is modified the server notifies all clients that have
the file cached.

• Thus if a client reopens a cached file it can use the local
cache and need not contact the server unless it has
been informed that the cache is invalid.

• Venus also caches contents of directories and symbolic
links for pathname translation. All lookups are done
locally in the cached directories.

• The only exception to this caching policy is modification
to directories that are made directly at the server.

13

NFS V4

• Closer to AFS than to earliar versions of NFS.

• Stateful server.

• File locking integrated into protocol.

• Mount protocol removed.

• NFS protocol now supports open and close operations.

• A COMPOUND operation added.

→ NFS procedures are now groupable.

• Uses TCP as transport protocol.

→ Uses only one well defined port (2049).

• Strong security based on GSS API (Generic Security
Service API).

→ Kerberos V5.
→ LIPKEY (A public key protocol).

14



Memory Mapped Files

• The most common way to handle files use operations
like read and write.

• An alternative way is to map the file into the virtual
address space and use normal memory access
operations.

• This method requires two extra system calls:

MAP(file,address) Map the file, file, to the address address
in the process’s address space.

UNMAP(address) Remove the previously mapped file from
the process’s

Copying of file abc to file xyz with this method involves the
following steps:

1. Map the file abc into a memory segment

2. Create the file xyz and set it’s size with ftruncate

3. map the file xyz into a memory segment

4. Copy memory area abc to memory area xyz

5. unmap memory segments abc and xyz

15

Memory Mapped Files

Memory mapping is implemented as part of the virtual
memory.

• When a file is mapped into the virtual memory, a page
table is created for the new segment and all pages are
marked as invalid. The mapped file is set as paging
memory for the segment.

• When the segment is referenced a page fault interrupt is
generated and the faulting page is brought in by the
virtual memory.

Advantages

• When a normal read operation is used data is read from
disk memory to a system buffer. From the system buffer
data is copied to a buffer in the process’s address
space. With memory mapping this last copy operation is
eliminated as the data is mapped into the process’s
address space by the virtual memory.

• The most common use of mmap is to set up segments
for shared libraries.

16



Memory Mapped Files

Problems

• When writing the system cannot know the exact length
of a file unless it is assigned by a separate system call
like ftruncate.

• If memory mapping and conventional I/O is used
concurrently at the same file, inconsistent versions of
the file may be seen. This problem have been solved in
most systems by using the same buffering mechanism
for the file system and the virtual memory.

• The address space in a 32-bit architecture is not always
big enough to map a complete file.

17


