
Why use an Operating System?

• Provides a set of services to system users (collection
of service programs)

• Shield between the user and the hardware

• Resource manager:

→ CPU(s)
→ memory and I/O devices

• A control program

→ Controls execution of programs to protect information
against accidental or unauthorized access
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Operating System Definition

• No universally accepted definition

• “Everything a vendor ships when you order an operating
system” is good approximation

→ But varies wildly

• “The one program running at all times on the computer”
is the kernel . Everything else is either a system
program (ships with the operating system) or an
application program
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Interrupts

• The machine has two modes, user mode and kernel
mode.

• The machine has a status register (PSW - processor
status Word) that determines the machine’s priority level
and mode (user/kernel mode)

• Then an interrupt occurs, the machine’s PSW and PC
are saved on kernel stack and a new PSW with the
kernel mode bit set is loaded from the interrupt vector
area.

• At execution of the return-from-interrupt instruction,
PSW and PC are restored from kernel stack.

• Certain instructions are privileged and can only be
carried out in kernel mode - for example load-psw.
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Definition of process

A process is a program in execution.

A program is passive while a process is active.

A process consists of:

• Program code.

• Data area.

• Stack.

• General registers.

• Program counter.
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Concurrent processes

Why do we want concurrent processes?

• Sharing of physical resources (CPU, disks).

• Convenience. It may be good to be able to run several
programs at the same time.

• Increased speed of calculation.

1. Decreased waiting times through more efficient use
of the processor.

2. On a multiprocessor a program may be divided in
several processes that execute concurrently.

Most of these reasons are valid also for a single user
system.
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Process State Diagram
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Running: The executing process

Ready: Processes ready to run

Blocked: Processes waiting for other resource than
CPU
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Process Control Block (PCB)

Data structure that contains information about the process.

A PCB contains among other things:

• Pointer to the next PCB.

• Process state.

• Process identifier.

• Scheduling information. e.g. process priority.

• Memory-management information.

• Pointers to child and parent processes.

• Save area for processor registers.

The PCB is the data structure that defines the process for
the operating system.
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Process Queues
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State transitions

The assignment of the processor to the first process in the
ready queue is performed by a system entity called the
dispatcher.

The dispatcher performs:

• Save the state (registers) of the interrupted process in
it’s PCB.

• Fetch the state for the next process to run from it’s PCB.

• Activate the next process.

This state change can be described as:
dispatch(process-name): ready -> running.

The dispatcher is often called by other operating system
subroutines as:

• sleep(process name): running -> blocked.

• wakeup(process name): blocked -> ready.

The only state transition that is initiated by the process
itself is block. The other transitions are initiated by events
outside the process.
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Unix sleep and wakeup routines

• Unix/Linux processes that execute user code executes
in user mode.

• Preemptive scheduling is used in user mode.

• A process that has made a system call - and is
executing operating system code - executes in kernel
mode.

• Older Unix systems used non-preemptive scheduling in
kernel mode but nowadays preemptive scheduling is
used also in kernel mode.

• A process that needs to wait (for example for data from
a disk memory) releases the processor by calling the
subroutine sleep.

• When the awaited event occurs the process is woken up
by the interrupt handler calling the subroutine wakeup.

• Wakeup can also be called by another process
executing in kernel mode. Wakeup changes the state
for the awoken process from sleeping to ready.
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Operations on processes

System calls for process management:

• Create process.

• Kill process.

• Start execution of a program.

• Create a communication channel to another process.
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