
Why use an Operating System?

• Provides a set of services to system users (collection
of service programs)

• Shield between the user and the hardware

• Resource manager:

→ CPU(s)
→ memory and I/O devices

• A control program

→ Controls execution of programs to protect information
against accidental or unauthorized access

1

Operating System Definition

• No universally accepted definition

• “Everything a vendor ships when you order an operating
system” is good approximation

→ But varies wildly

• “The one program running at all times on the computer”
is the kernel . Everything else is either a system
program (ships with the operating system) or an
application program

2



Interrupts

• The machine has two modes, user mode and kernel
mode.

• The machine has a status register (PSW - processor
status Word) that determines the machine’s priority level
and mode (user/kernel mode)

• Then an interrupt occurs, the machine’s PSW and PC
are saved on kernel stack and a new PSW with the
kernel mode bit set is loaded from the interrupt vector
area.

• At execution of the return-from-interrupt instruction,
PSW and PC are restored from kernel stack.

• Certain instructions are privileged and can only be
carried out in kernel mode - for example load-psw.

3

Definition of process

A process is a program in execution.

A program is passive while a process is active.

A process consists of:

• Program code.

• Data area.

• Stack.

• General registers.

• Program counter.

4



Concurrent processes

Why do we want concurrent processes?

• Sharing of physical resources (CPU, disks).

• Convenience. It may be good to be able to run several
programs at the same time.

• Increased speed of calculation.

1. Decreased waiting times through more efficient use
of the processor.

2. On a multiprocessor a program may be divided in
several processes that execute concurrently.

Most of these reasons are valid also for a single user
system.

5

Process State Diagram

Wakeup

Sleep Dispatch
Interrupt
Timer−

Ready

Running

Blocked

Running: The executing process

Ready: Processes ready to run

Blocked: Processes waiting for other resource than
CPU

6



Process Control Block (PCB)

Data structure that contains information about the process.

A PCB contains among other things:

• Pointer to the next PCB.

• Process state.

• Process identifier.

• Scheduling information. e.g. process priority.

• Memory-management information.

• Pointers to child and parent processes.

• Save area for processor registers.

The PCB is the data structure that defines the process for
the operating system.

7

Process Queues

Wakeup

Dispatch
Interrupt
Timer−

Ready

Running

Blocked

Sleep

PCB

ID=3

READY
...

PCB

...
RUNNING

Ready Q

Running

System Table
Central

PCB

READY
...

PCB

READY
...

ID=4ID=1

ID=2

8



State transitions

The assignment of the processor to the first process in the
ready queue is performed by a system entity called the
dispatcher.

The dispatcher performs:

• Save the state (registers) of the interrupted process in
it’s PCB.

• Fetch the state for the next process to run from it’s PCB.

• Activate the next process.

This state change can be described as:
dispatch(process-name): ready -> running.

The dispatcher is often called by other operating system
subroutines as:

• sleep(process name): running -> blocked.

• wakeup(process name): blocked -> ready.

The only state transition that is initiated by the process
itself is block. The other transitions are initiated by events
outside the process.

9

Unix sleep and wakeup routines

• Unix/Linux processes that execute user code executes
in user mode.

• Preemptive scheduling is used in user mode.

• A process that has made a system call - and is
executing operating system code - executes in kernel
mode.

• Older Unix systems used non-preemptive scheduling in
kernel mode but nowadays preemptive scheduling is
used also in kernel mode.

• A process that needs to wait (for example for data from
a disk memory) releases the processor by calling the
subroutine sleep.

• When the awaited event occurs the process is woken up
by the interrupt handler calling the subroutine wakeup.

• Wakeup can also be called by another process
executing in kernel mode. Wakeup changes the state
for the awoken process from sleeping to ready.

10



Operations on processes

System calls for process management:

• Create process.

• Kill process.

• Start execution of a program.

• Create a communication channel to another process.

11


