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Remember…
Basic OS structures:  intro in historical order  
(step 2 & 2,5) multiprogramming needs …

• … memory management! 
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Background

• Program
– must be brought into memory (must be made a 
process) to be executed.

– process might need to wait on the disk, in input 
queue before execution starts

• Memory
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• Memory
– can be subdivided to accommodate multiple 
processes

– needs to be allocated efficiently to pack as 
many processes into memory as possible



Memory Management

• Ideally programmers want memory that is
– large

– fast

– non volatile

• Memory hierarchy
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• Memory hierarchy
– small amount of fast, expensive memory – cache 

– some medium-speed, medium price main memory

– gigabytes of slow, cheap disk storage

• Memory manager handles the memory hierarchy



The position and function of the MMU
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Fig. source: (A.T. MOS 2/e)



Relocation and Protection

• Cannot be sure where 
program will be loaded in 
memory
– address locations of variables,  
code routines cannot be 
absolute
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absolute

– must keep a program out of 
other processes’ partitions



Hardware support for relocation and protection

Base, bounds registers: set when the process is executing

7



Swapping (Suspending) a process

A process can be swapped out of memory to a backing store (swap 
device) and later brought back (swap-in) into memory for continued 
execution.
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How is memory allocated?
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Contiguous Allocation of Memory:
Fixed Partitioning

• any program, no 
matter how small, 
occupies an entire 
partition.  

• this causes internal 
fragmentation.
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• this causes internal 
fragmentation.



Contiguous Allocation:
Dynamic Partitioning

• Process is allocated exactly as much memory as required

• Eventually holes in memory: external fragmentation

• Must use compaction to shift processes 
(defragmentation)
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Dynamic partitioning: 
Memory Management with 

Bit Maps and linked lists [AT MOS 2e]
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• Part of memory with 5 occupied segments, 
3 holes
– tick marks show allocation units
– shaded regions are free

• B - Corresponding bit map
• C - Same information as a list



Memory Management with Linked Lists: 
need of merge operations (AT MOS 2e-book)
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Four neighbor combinations for the terminating 
process/segment  X

Can also use more advanced data structures; cf. Buddy systems ch 9 

SGG-book (we do not study this closer )



Dynamic Partitioning: 
Placement algorithms

Which available partition to allocate for a request?

• First-fit:  use the first block that is big enough 
– fast

• Next-fit: use the next block that is big enough 
– tends to eat-up the large block at the end of the memory

• Best-fit:  use the smallest block that is big enough 
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• Best-fit:  use the smallest block that is big enough 
– must search entire list (unless free blocks are ordered by size) 

– produces the smallest leftover hole.

• Worst-fit:  use the largest block
– must also search entire list  

– produces the largest leftover hole…

– … but eats-up big blocks

.



Q: how to avoid external fragmentation?
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To avoid external fragmentation: Paging

• Partition memory into small 
equal-size chunks (frames) 
and divide each process
into the same size chunks 
(pages)

• OS maintains a page table
for each process
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for each process
– contains the frame 
location for each page in 
the process

– memory address = (page 
number, offset within 
page)



Paging Example 
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Question: do we avoid fragmentation completely?



Typical page table entry
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(Fig. From A. Tanenbaum, Modern OS 2/e)



Implementation of Page Table?
1. Main memory:

• page-table base, length registers
• each program reference to memory => 2 memory accesses

19



Implementation of Page Table? 
2: Associative Registers

Page # Frame #

a.k.a Translation Lookaside Buffers (TLBs): special fast-lookup 
hardware cache; parallel search (cache for page table)
Address translation (P, O): if P is in associative register (hit), get frame 
# from TLB; else get frame # from page table in memory
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Effective Access Time

• Associative Lookup = ε time units (fraction of microsecond)

• Assume memory cycle time is 1 microsecond

• Hit ratio (= α): percentage of times a page number is found in the 
associative registers 

• Effective Access Time = (1 + ε) α + (2 + ε)(1 – α) = 2 + ε – α



Two-Level Page-Table Scheme and 
address translation



Three-level Paging Scheme



Hashed Page Tables

• The virtual page number 
is hashed into a page 
table
– This page table contains 
a chain of elements 
hashing to the same hashing to the same 
location

• Virtual page numbers are 
compared in this chain 
searching for a match
– If a match is found, the 
corresponding physical 
frame number (r in the 
example) is extracted



Inverted Page Table

• One entry for each real 
page of memory

• Entry consists of the 
virtual address of the 
page stored in that real 
memory location, with 
information about the 
process that owns that process that owns that 
page

• Decreases memory 
needed to store each page 
table, but increases time 
needed to search the 
table when a page 
reference occurs

• Use hash table to limit 
the search to one — or at 
most a few — page-table 
entries



Shared Pages

Shared code: one copy of read-only (reentrant) code shared 
among processes (i.e., text editors, compilers, window systems, 

library-code, ...).

How to self-address a shared page?: watch for different numbering 
of page, though; or use indirect referencing
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Segmentation

1

2

1

4

• Memory-management scheme that 
supports user view of 
memory/program, i.e. a collection 
of segments.  

• segment = logical unit such as:

main program,
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3

4

2

3

user space physical memory 

space

main program,

procedure, 

function,

local, global variables, 

common block,

stack,

symbol table, arrays



Segmentation Architecture

• Protection: each entry in segment table:

– validation bit = 0 ⇒ illegal segment

– read/write/execute privileges

– ...

• Code sharing at segment level (watch for segment numbers, 
though; or use indirect referencing).

• Segments vary in length => need dynamic partitioning for memory 
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• Segments vary in length => need dynamic partitioning for memory 
allocation.



Sharing of segments

Simpler to self-
address a 
shared segment 
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address a 
shared segment 
by using the 
same seg#



Segmentation (A.T. MOS 2/e)
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• One-dimensional address space with growing tables
• One table may bump into another



Comparison of paging and segmentation
(A.T. MOS 2/e)
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Combined Paging and Segmentation

• Paging 
– transparent to the programmer
– eliminates external fragmentation

• Segmentation

– visible to the programmer
– allows for growing data structures, modularity, 
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– allows for growing data structures, modularity, 
support for sharing and protection

– But: memory allocation?

• Hybrid solution: page the segments (each segment is 
broken into fixed-size pages)
– E.g. MULTICS, Pentium



Combined Address Translation Scheme
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Example: The Intel Pentium

• Supports both segmentation and segmentation 
with paging

• CPU generates logical address
– Given to segmentation unit

• Which produces linear addresses 

– Linear address given to paging unit– Linear address given to paging unit
• Which generates physical address in main memory

• Paging units form equivalent of MMU



Intel Pentium Segmentation

(Segment#, global/local segment partition, protection)

16 16



Pentium Paging Architecture

One of the 

processor’s

registers

OR

Depending on 

flag in page-

directory



Linear Address in Linux in Pentium 
Architecture

Supports fixed  # of segments 

• for portability (not all architectures support segmentation)

• kernel code/data, user code/data, task-state segment (data useful for 
context switching), local data segment (usually some default)

Needs to comply with 32 and 64-bit architectures

•Uses 3 level-paging (see next)



Three-level Paging in Linux

0-bits in32-bit pendium



Segmentation with Paging: MULTICS 
(A.T. MOS 2/e)
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• Simplified version of the MULTICS TLB
• Existence of 2 page sizes makes actual TLB more complicated (cf

pentium outline)



Virtual memory
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Execution of a program:
Virtual memory concept

Main memory = cache of the disk space

• Operating system brings into main memory a few pieces 
of the program

• Resident set - portion of process that is in main memory

• when an address is needed that is not in main memory a 
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• when an address is needed that is not in main memory a 
page-fault interrupt is generated: 
– OS places the process in blocking state and issues a disk IO 
request

– another process is dispatched



Valid-Invalid Bit

• With each page table entry a valid–invalid bit is 
associated (initially 0)
1 ⇒ in-memory
0⇒ not-in-memory

1

1

Frame # valid-invalid bit
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• During address translation, if valid–invalid bit in 
page table entry is 0 ⇒ page fault interrupt to OS

1

1

1

0

0

0

M

page table



Page Fault and (almost) complete address-translation scheme

• get empty 
frame (swap out
that page?).

• swap in page 
into frame.

• reset tables, 

In response to page-fault interrupt, OS must: 
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• reset tables, 
validation bit 

• restart
instruction



if there is no free frame?

Page replacement –want an algorithm which will result in minimum 
number of page faults.

• Page fault forces choice 
– which page must be removed
– make room for incoming page

• Modified page must first be saved 
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• Modified page must first be saved 
– unmodified just overwritten(use dirty bit to optimize 
writes to disk)

• Better not to choose an often used page
– will probably need to be brought back in soon



Replacement algorithms in virtual memory
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First-In-First-Out (FIFO) Replacement Algorithm

Can be implemented using a circular buffer
Ex.:Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• 3 frames

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults
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• 4 frames

• Belady’s Anomaly: more frames , sometimes  more page faults
Problem: replaces pages that will be needed soon

33 2 4

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3



Optimal Replacement Algorithm

• Replace page that will not be used for longest period of time.

• 4 frames example

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

1 4
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• How do we know this info?
– We don’t

• Algo can be used for measuring how well other algorithms perform.

2

3

4

6 page faults

4 5



Least Recently Used (LRU) Replacement Algorithm

Idea: Replace the page that has not been referenced for 
the longest time. 

• By the principle of locality, this should be the page least likely to 
be referenced in the near future

Implementation:
• tag each page with the time of last reference 
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• tag each page with the time of last reference 
• use a stack
Problem: high overhead (OS kernel involvement at every 
memory reference!!!) if HW support not available



LRU Algo (cont)

1

2

3

5

45

48

Example: Reference string:  

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

4

4 3

5



LRU Approximations: 
Clock/Second Chance -

• uses use (reference) bit : 
– initially 0

– when page is referenced, set to 
1 by HW

• to replace a page:
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• to replace a page:
– the first frame encountered  
with use bit 0 is replaced.

– during the search for 
replacement, each use bit set to 
1 is changed to 0 by OS

• note: if all bits set => FIFO



Simulating LRU:
the aging algorithm(A.B. MOS 2/e)
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• The aging algorithm simulates LRU in software



LRU Approximations: 
Not Recently Used Page Replacement Algorithm

• Each page has Reference (use) bit, Modified 
(dirty) bit
– bits are set when page is referenced, modified

– Ref bit is cleared regularly 

• Pages are classified
not referenced, not modified
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1. not referenced, not modified

2. not referenced, modified (is it possible?)!

3. referenced, not modified

4. referenced, modified

• NRU removes page at random from lowest numbered 
non empty class



Design Issues for Paging Systems

• Global vs local allocation policies
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• Global vs local allocation policies
– Of relevance: Thrashing, working set

• Cleaning Policy

• Fetch Policy

• Page size



Local versus Global Allocation Policies (A.T. MOS2/e)
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• Original configuration
• Local page replacement
• Global page replacement



Local versus Global Allocation Policies (A.T. MOS2/e)
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Per-process page fault rate as a function of the 
number of page frames assigned to the process



Thrashing

• If a process does not have “enough” pages, the 
page-fault rate is very high.  This leads to:

– low CPU utilization.

– operating system may think that it needs to 
increase the degree of multiprogramming.

– another process added to the system…

55

– another process added to the system…

– and the cycle continues …

• Thrashing ≡ the system is busy serving page 
faults (swapping pages in and out).



Thrashing Diagram
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Why does paging work?
Locality model
– Process migrates from one locality to another.
– Localities may overlap.

Why does thrashing occur?
Σ size of locality > total memory size



Page-Fault Frequency Scheme and Frame Allocation 
for Thrashing Avoidance
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• Establish “acceptable” per-process page-fault rate.
– If actual rate too low, process loses frame.

– If actual rate too high, process gains frame.



Locality In A Memory-Reference Pattern



Working-Set Model for Thrashing Avoidance

• ∆ ≡ working-set window ≡ a fixed number of page references 
Example:  10,000 instructions

• WSSi (working set of Process Pi) =
total number of pages referenced in the most recent ∆
references (varies in time)

– if ∆ too small will not encompass entire locality.

– if ∆ too large will encompass several localities.
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– if ∆ too large will encompass several localities.

– if ∆ = unbounded ⇒ will encompass entire program.

• D = Σ WSSi ≡ total demand for frames 

• D > m⇒ Thrashing

• Policy: if D > m, then suspend some process(es).



Working-set model



Working Sets and Page Fault Rates



Keeping Track of the Working Set

• Approximate with interval timer + 
reference bit (recall LRU approximation in 
software /aging algo)

• Example: ∆ = 10,000
– Timer interrupts after every 5000 time 

units.

– Keep in memory 2 bits for each page.

– Whenever a timer interrupts: copy each 
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– Whenever a timer interrupts: copy each 
page’s ref-bit to one of the memory bits and 
reset each    of them

– If one of the bits in memory = 1 ⇒ page in 
working set.

• Why is this not completely accurate?

• Improvement = 10 bits and interrupt every 
1000 time units.



Process Suspension for Thrashing Avoidance:
which process to chose?

• Lowest priority process
• Faulting process

– does not have its working set in main memory so will be 
blocked anyway

• Last process activated
– this process is least likely to have its working set resident
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– this process is least likely to have its working set resident

• Process with smallest resident set
– this process requires the least future effort to reload

• Largest process
– obtains the most free frames 



Design Issues for Paging Systems

• Global vs local allocation policies
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• Global vs local allocation policies
– Of relevance: Thrashing, working set

• Cleaning Policy

• Fetch Policy

• Page size



Cleaning Policy

Determines when dirty pages are written to disk:
• Need for a background process, paging daemon: periodically 

inspects state of memory

Precleaning: first clean then select to free (if needed) 
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Page buffering: first free (even when not needed) then clean 



Cleaning Policy: precleaning

Precleaning: first clean then free (if needed) 

• pages are written out in batches, off-line, periodically: When too 

few frames are free, paging daemon

– selects pages to evict using a replacement algorithm
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– can use same circular list (clock) 

• as regular page replacement algorithm but with different 

pointers 



Cleaning Policy: page buffering

Page buffering: first free then clean 

• use modified, unmodified lists of replaced pages (freed in 

advance)

– A page in the unmodified list may be:

67

• reclaimed if referenced again

• lost when its frame is assigned to another page

– Pages in the modified list are 

• periodically written out in batches

• can also be reclaimed



Fetch Policy

Determines when a page should be brought into memory:

Demand paging only brings pages into main memory when a 
reference is made to it
– Many page faults when process first started

Prepaging brings in more pages than needed
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Prepaging brings in more pages than needed
– More efficient to bring in pages that reside contiguously on the 
disk



Design Issues for Paging Systems

• Global vs local allocation policies
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• Global vs local allocation policies
– Of relevance: Thrashing, working set

• Cleaning Policy

• Fetch Policy

• Page size



Page Size: Trade-off

• Small page size: 
– less internal fragmentation
– more pages required per process
– larger page tables (may not be always in main memory)

• Small page size:
– large number of pages in main memory; as time goes on during 
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– large number of pages in main memory; as time goes on during 
execution, the pages in memory will contain portions of the 
process near recent references.  Page faults low.

– Increased page size causes pages to contain locations further 
from recent reference.  Page faults rise.

– Page size approaching the size of the program: Page faults low 
again.

• Secondary memory designed to efficiently  transfer large blocks => 
favours large page size





Page Size: managing space-overhead trade-off
(A.T. MOS2/e)

• Overhead due to page table and internal 
fragmentation

s e p
overhead

⋅
= +

page table space
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• Where
– s = average process size

– p = page size

– e = page entry size

2

s e p
overhead

p

⋅
= + internal 

fragmentation

Optimized when

2p se=



Page Size (cont)

• Multiple page sizes provide the flexibility needed (to 
also use TLBs efficiently):

– Large pages can be used for program instructions

– Small pages can be used for threads

• Multiple page-sizes available by microprocessors: MIPS 
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• Multiple page-sizes available by microprocessors: MIPS 
R4000, UltraSparc, Alpha, Pentium. 

• Most current operating systems support only one page 
size, though.



Implementation Issues
Operating System Involvement with Paging (A.T. MOS2/e)

Four times when OS involved with paging
1. Process creation

− determine program size
− create page table

Process execution
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create page table

2. Process execution
− MMU reset for new process
− TLB flushed

3. Page fault time
− determine virtual address causing fault
− swap target page out, needed page in

4. Process termination time
− release page table, pages



Implementation Issues
Locking Pages in Memory

• Need to specify some pages locked, aka pinned 
(memory interlock)
– exempted from being target pages
– Recall lock-bit

• Examples: 
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• Examples: 
– Proc. has just swapped in a page

• Or Proc issues call for read from device into buffer

– another processes starts up
• has a page fault

– buffer for the first proc may be chosen to be paged 
out



Implementation Issues
Backing Store (A.T. MOS2/e)
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(a) Paging to static swap area
(b) Backing up pages dynamically



Performance of Demand Paging: 

• Page Fault Rate 0 ≤ p ≤ 1.0
– if p = 0 no page faults 
– if p = 1, every reference is a fault

• Effective Access Time (EAT)

EAT = (1 – p) x memory access
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EAT = (1 – p) x memory access
+ p (page fault overhead
+ [swap page out ]

+ swap page in

+ restart overhead)



Demand Paging Example

• Memory access time = 200 nanoseconds

• Average page-fault service time = 8 milliseconds

• EAT = (1 – p) x 200 + p (8 milliseconds) 

= (1 – p)  x 200 + p x 8,000,000 

= 200 + p x 7,999,800= 200 + p x 7,999,800

• If one access out of 1,000 causes a page fault, then

EAT = 8.2 microseconds. 

This is a slowdown by a factor of 40!!



Other Considerations
programmer’s perspective

• Program structure
– Array A[1024, 1024] of integer

– Each row is stored in one page

– Program 1 for j := 1 to 1024 do
for i := 1 to 1024 do

A[i,j] := 0;
1024 x 1024 page faults 
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A[i,j] := 0;
1024 x 1024 page faults 

– Program 2 for i := 1 to 1024 do
for j := 1 to 1024 do

A[i,j] := 0;
1024 page faults



Memory-Mapped Files

• Memory-mapped file I/O allows file I/O to be treated as routine 
memory access by mapping a disk block to a page in memory

• A file is initially read using demand paging. A page-sized portion of 
the file is read from the file system into a physical page. 
Subsequent reads/writes to/from the file are treated as ordinary 
memory accesses.memory accesses.

• Simplifies file access by treating file I/O through memory rather 
than read() write() system calls

• Also allows several processes to map the same file allowing the 
pages in memory to be shared



Memory Mapped Files

Can also be used to share data

Need to protect

shared data from 

concurrent

accesses; more

in forthcoming

lectures



Memory-Mapped Shared Memory in Windows

THE way to share data among processes in windows systems



Operating System Examples
highlight issues

• Windows XP

• Solaris 



Windows XP virtual memory

• Uses demand paging with clustering. Clustering brings in pages 
surrounding the faulting page

• Processes are assigned working set minimum and working set 
maximum
– Working set minimum: minimum number of pages the process is 
guaranteed to have in memoryguaranteed to have in memory

– A process may be assigned as many pages up to its working set 
maximum:
• Allocate from the free-list if non-empty

• When the amount of free memory in the system falls below a 
threshold, automatic working set trimming is performed to restore 
the amount of free memory
– trimming removes pages from processes that have pages in excess of their 

working set minimum (victims selected using second-chance or FIFO -like)



Solaris virtual memory  

• Maintains a list of free (but not overwritten) pages to assign to 
faulting processes (prepare then clean)
– Lotsfree – threshold parameter (amount of free memory) to begin paging
– Desfree – threshold parameter to increasing paging
– Minfree – threshold parameter to begin swapping

• Paging is performed by pageout process: scans pages using modified 
clock algorithm (2 hands: second-chance and freeing hands)

– Scanrate : ranges from slowscan to fastscan - depending upon the amount – Scanrate : ranges from slowscan to fastscan - depending upon the amount 
of free memory available



Solaris 2 Page Scanner


