
Lecture 5:

1

Process Description and Control
Multithreading
Basics in Interprocess communication
Introduction to multiprocessors

Process:the concept

Process = a program in execution

• Example processes:
– OS kernel

– OS shell

– Program executing after compilation

2

– Program executing after compilation

– www-browser

Process management by OS :
– Allocate resources
– Schedule: interleave their execution (watch for
processor utilization, response time)

– Interprocess communication, synchronization (watch
for deadlocks; interleaving, nondeterminism imply
increased difficulties!)

Process’ lifetime:
1. Two-State Process Model

• Process may be in one of two states
– Running, Not-running

– Not-Running Process in a Queue

3

2. What are not-running processes doing?

4

3. Actually there are more queues to
wait on …

5

Observe: I/O’s much slower than CPU
Question: What if all processes are waiting for IO and all memory is
allocated?
Or if not enough memory for all processes to execute?
Or if ...

4. Suspended Processes

…Answer/Idea: Swap these processes to disk to
free up more memory (to admit new processes)

• Blocked state becomes suspend state when
swapped to disk

6

4a. Two Suspend States

7

4b.Reasons for Process Suspension

e.g. to prevent deadlock

8

OS Control Structures

What a process needs in order to
execute (process’ image):

• Program
• Data
• Stack
• Process Control Block

(context; for
multiprogramming)

10

multiprogramming)

The OS must keep:
• Information about the

current status of each
process and resource

• Tables are constructed for
each entity the operating
system manages

Process Table (and other OS tables)
Each entry:
• Attributes necessary
for its management
– Process ID
– Process state
– Location in memory
– Etc: process control
block

11

• Other tables hold
resource-specific info
(zoom into later):
– How main/secondary
memory is allocated,

– I/O device status,
buffer in memory,…

– File status, location,
attributes, …

Process Control Block

PCB contains:
• Identifiers (process, parent
process, user, …)

• Processor State Information
(register values: must be copied and
restored in state transitions:
running↔ready,…)

12

running↔ready,…)
• Other Process Control Information:

– Scheduling and State Information
(priority, event awaited, …)

– Process memory tables
– Resources (open files, ownership, …)
– Links (to other process in a queue, …)
– Privileges
– …

Process Creation

Examples:
• Execution of a compiled user program
• User logs on (shell starts executing)
• Process creation to provide a service
(e.g. printing: user executes lpr)

• A process creates another process (e.g.
shell creates lpr; user programs can
create processes, as well)

13

create processes, as well)

OS must:
• Assign a unique process identifier
• Allocate space for the process
• Initialize process control block
• Set up appropriate linkages

– “Include” the process in the system
(in some queue(s), …)

Change of Process State + new dispatch
(context switching)

running→other

• Save context of processor
including program counter and
other registers (in PCB)

• Move PCB to appropriate queue
(ready, blocked, …)

• Select another process for

14

• Select another process for
execution

• Update the PCB of the process
selected

• Update memory-management
data structures

• Restore context (in processor)
of the selected process

Representation of Process Scheduling
/when to switch a running process

Clock interrupt
process has executed for the
maximum allowable time slice

I/O interrupt
Memory fault

memory address is in virtual memory address is in virtual
memory so it must be brought
into main memory

Trap
error occurred
may cause process to be moved
to Exit state

Supervisor call (or system call)
such as file open

Ready Queue And Various I/O Device Queues

Addition of Medium Term Scheduling
(swap-out/suspension)

dispatch

Interprocess Communication
• Processes within a system may be
independent or cooperating

• Reasons for cooperating processes:
– Information sharing

– Computation speedup

– Modularity, Convenience– Modularity, Convenience

– Eg. Producer-consumer

• Cooperating processes need interprocess
communication (IPC)

• Two models of IPC
– Shared memory

– Message passing

(more: to be discussed soon)

Threads

19

Processes and Threads
multithreading: more than one entities can possibly
execute in the same resource- (i.e. process-)
environment (and collaborate better)

Unit of …

• … dispatching is
referred to as a

20

• … dispatching is
referred to as a
thread

• … resource
ownership is
referred to as a
process or task

A process has … A thread has …
• a virtual address space which
holds the process image

• global variables, files, child
processes, signals and signal
handlers

• an execution state,
stack and context
(saved when not
running)

• access to the memory
and resources of its
process

21

process
– all threads of a
process share this

• some per-thread
static storage for local
variables

Suspension and termination

• Suspending a process involves suspending all
threads of the process since all threads share
the same address space

• Termination of a process, terminates all
threads within the process

22

threads within the process

Benefits of Threads

• Since threads within the same process share
memory and files, they can communicate with
each other without invoking the kernel

• May allow parallelization within a process:
– I/O and computation to overlap (remember the

23

– I/O and computation to overlap (remember the
historical step from uniprogramming to multiprogramming?)

– concurrent execution in multiprocessors

• Takes less time to
– create/terminate a thread than a process

– switch between two threads within the same
process

Uses of Threads

• Overlap foreground (interactive) with
background (processing) work

• Asynchronous processing (e.g. backup while
editing)

• Modular program structure (must be careful

24

• Modular program structure (must be careful
here, not to introduce too much extra
overhead)

• Speed execution (parallelize independent
actions) -cf. multicores/multiprocessor
systems

Multicore Programming

• Multicore systems putting pressure on
programmers, challenges include
– Dividing activities

– Balance

– Data splitting– Data splitting

– Data dependency

– Testing and debugging

e.g. Multithreaded Server
Architecture

“Concurrent” Execution on a Single-core System

Parallel Execution on a dual-core System

Question

can one have concurrency (independent threads
of execution) within a process but without
OS-support of threads? (i.e. no thread tables
etc)

29

etc)

Hint: remember the step to multiprogramming on
a single processor?

Think of Interrupts/Signals….

… signals (similar to interrupts) can notify a
process that a particular event has occurred …

• A signal handler is used to process signals
1. Signal is generated by particular event e.g. timer or
non-blocking IO (cf select system call)

2. Signal is delivered to a process2. Signal is delivered to a process

3. Signal is handled; handling may involve to switch
between different threads (user-level)

… and of course also voluntary relinquish of control
can help in switching threads (+ e.g.
setjump/longjump C instructions)

Implementing Threads in User Space

The kernel is not aware of the existence of
threads; • Run-time system (thread-

library in execution) is
responsible for bookkeeping,
scheduling of threads

• allows for customised
scheduling

31

Fig: Tanenbaum, Modern OS, 2/e

scheduling

• can run on any OS

• But: problem with blocking
system calls (when a thread
blocks, the whole process
blocks; i.e other threads of
the same process cannot
run)

Implementing Threads in the Kernel

Kernel maintains context information for the
process and the threads • Scheduling is done

on a thread basis

• Does not suffer
from “blocking

32

Fig: Tanenbaum, Modern OS, 2/e

from “blocking
problem”

• Less efficient than
user-level threads
(kernel is invoked
for thread
creation,
termination,
switching)

Hybrid Implementations

Multiplexing user-level threads onto
kernel- level threads

To combine the
advantages of
the other two
approaches

33

Fig: Tanenbaum, Modern
OS, 2/e

approaches

34

Examples:

• Posix Pthreads: (IEEE) standard:
– Specifies interface

– Implementation (using user/kernel level threads) is up to the
developer(s)

– More common in UNIX-like systems (linux, mac-os)

• Win32 thread library:

35

• Win32 thread library:
– Kernel-level library, windows systems

• Java threads:
– Supported by the JVM (VM: a run-time system, a general
concept, with deeper roots and potential future in the
systems world)

– Implementation is up to the developers –e.g. can use Pthreads
API or Win32 API, etc

Examples (cont)

• Solaris: hybrid model
– User-level threads
– Lightweight processes
– Kernel threads

• WinXP: hybrid model
– Thread: kernel (use
win32 API)

• Fiber: user-level thread
(library)

36

Linux Threads

• Linux refers to them as tasks rather than threads

• Thread creation is done through clone() system call
– clone() allows a child task to share the address space of the
parent task (process)

Thread Pools

• Create a number of threads in a pool
where they await work

• Advantages:
– Usually slightly faster to service a
request with an existing thread than request with an existing thread than
create a new thread

– Allows the number of threads in the
application(s) to be bound to the size of
the pool

Scheduler Activations

• communication to maintain the appropriate number of
kernel threads allocated to the application
• To gain performance of user space threads

• upcalls - a communication mechanism from the kernel
to the thread library/run-time system
– Kernel assigns/allocates virtual processors (kernel threads)to

39

– Kernel assigns/allocates virtual processors (kernel threads)to
each process

– ”signals” upcalls to run-time system upon blocking and
unblocking of (user-level) threads

• allows an application to maintain the correct number
kernel threads

• Concern:
Fundamental reliance on kernel (lower layer)
calling procedures in user space (higher layer)

40

Execution of the Operating System

• Non-process Kernel
– operating system code is
executed as a separate entity
that operates in privileged mode

• Process-Based Operating
System
– major kernel functions are

41

– major kernel functions are
separate processes

– Useful in multi-processor or
multi-computer environment

• Execution Within User
Processes
– operating system software within
context of a user process

– process executes in privileged
mode when executing operating
system code

Interprocess Communication

Communication Models

Need to protect

Shared memory
Message passing

Need to protect

shared data from

concurrent

accesses; more

in forthcoming

lectures

Interprocess Communication – Message Passing

• Mechanism for processes to communicate and to synchronize
their actions

• Message system – processes communicate with each other
without resorting to shared variables

• IPC facility provides two operations:
– send(message) – message size fixed or variable
– receive(message)

• If P and Q wish to communicate, they need to:
send-receive

• If P and Q wish to communicate, they need to:
– establish a communication link between them
– exchange messages via send/receive

• Implementation of communication link
– physical (e.g., shared memory, hardware bus)
– logical (e.g., logical properties)

send-receive

can help in

synchronization

e.g. Producer-

consumer relations –

more in coming

lecture(s)

Implementation Questions

• How are links established?

• Can a link be associated with more than two
processes?

• How many links can there be between every pair of
communicating processes?

• What is the capacity of a link?• What is the capacity of a link?

• Is a link unidirectional or bi-directional?

Direct Communication

• Processes must name each other explicitly:
– send (P, message) – send a message to process P
– receive(Q, message) – receive a message from process Q

Indirect Communication

• Messages are directed and received from
mailboxes (sometimes referred to as ports)
– Each mailbox has a unique id

– Processes can communicate only if they share a mailbox

• Operations• Operations
– create a new mailbox

– send and receive messages through mailbox

– destroy a mailbox

• Primitives are defined as:

send(A, message) – send a message to mailbox A
receive(A, message) – receive a message from
mailbox A

Examples of IPC Systems - POSIX

• POSIX Shared Memory
– Process first creates shared memory segment
segment id = shmget(IPC PRIVATE, size, S IRUSR | S

IWUSR);

– Process wanting access to that shared memory must attach to
it

shared memory = (char *) shmat(id, NULL, 0);

– Now the process could write to the shared memory
sprintf(shared memory, "Writing to shared

memory");

– When done a process can detach the shared memory from its
address space

shmdt(shared memory);

Examples IPC: Sockets
• Using sockets: defined as endpoints for communication
• Concatenation of IP address and port

– The socket 161.25.19.8:1625 refers to port 1625 on host
161.25.19.8

• Communication consists between a pair of sockets

Examples IPC:Remote Procedure Calls (eg
Java Remote Method Invocation)

• Remote procedure call (RPC) abstracts procedure calls
between processes on networked systems (or VMs)

• Stubs – client-side proxy for the actual procedure on
the server

client server

stubstub

locates the
server,
marshalls
the
parameters

receives this
message, unpacks
the marshalled
parameters, and
peforms the
procedure on the
server

Execution of RPC

Multiprocessor Systems:
Some closer look

Multiprocessors

Rough definition:
A computer system in which two or more
CPUs sharing full access to a common
RAM

53

Multiprocessor/Multicore
Hardware (ex.1)

54

Bus-based multiprocessors

Multiprocessor/Multicore Hardware (ex.2)
UMA (uniform memory access)

55

Not/hardly scalable
• Bus-based architectures -> saturation
• Crossbars too expensive (wiring constraints)
Possible solutions
• Reduce network traffic by caching
• Clustering -> non-uniform memory latency
behaviour (NUMA.

Multiprocessor/Multicore Hardware (ex.3)
NUMA (non-uniform memory access)

will discuss MMU

and cache-coherence

in the coming lecture(s)

56

• Single address space visible to all CPUs

• Access to remote memory slower than to local

• Cache-controller/MMU determines whether a reference is local or
remote

• When caching is involved, it's called CC-NUMA (cache coherent
NUMA)

in the coming lecture(s)

Hyperthreading

HW gives image of multiple processors per processor
OS can be oblivious; but will benefit from knowing that
it runs on such a HW (to be discussed in scheduling
context)
• logical CPU = state only (not execution unit)
• when processing stalls (eg cache miss, other data-dependency),
hyperthreaded processor can execute the other thread

On multicores

Reason for multicores: physical
limitations can cause significant heat
dissipation by high clock rate; instead,
parallelize within the same chip!

In addition to operating system (OS)

58

In addition to operating system (OS)
support, adjustments to existing
software are required to maximize
utilization of the computing resources
provided by multi-core processors.

Virtual machine approach again in
focus.

Intel Core 2 dual core

processor, with CPU-local

Level 1 caches+ shared,

on-die Level 2 cache.

Contemporary graphics

cards can have 128

(SIMD-like) cores

On multicores (cont)

• Also possible (figure from
www.microsoft.com/licensing/highlights/multicore.mspx)

59

