
Distributed File Systems

A distributed file system (DFS) is a distributed
implementation of a classical time-sharing model of a file
system.

The purpose of a DFS is to support the same kind of
sharing when the files are physically dispersed among
several computers.

1

Distributed File Systems

Definitions

Distributed system - A number of loosely coupled
machines connected by a (local area) network.

Service - A service is a program executing on one or
several computers providing services to unknown clients.

Server - A specific machine running the server program.

Client - A process demanding service from the server.

Client interface - the (carefully specified) routines that the
client use to contact the server.

Primitive file system operations - The routines included
in the client interface for a distributed file system service.

Component unit - The smallest set of files that can be
stored on a single machine, independently from other units.
All files in a unit must be stored in the same location.

2



Naming and Transparency

The user of a file system refers to a file by its external
name (usually a text string).

The file system translates the external name to an internal
name (usually a numerical identifier). This identifier in turn
is mapped to disk blocks.

This multilevel mapping hides the details of where on the
disk the file is stored.

In a transparent DFS a new dimension is added to the
abstraction: that of hiding where in the network the file is
located.

Definitions

• Location transparency . The name does not reveal any
hint of the file’s physical storage location.

• Location independence . The name of the file need not
be changed, when the file’s physical storage location is
changed.

Both definitions are relative to the level of naming. A file
system can be location transparent relative to external
names but not location transparent relative to internal
names.

3

Naming and Transparency

• A location independent naming scheme is a dynamic
mapping, since it can map a file to different locations at
different times.

• This requires a data base to keep track of the current
storage location for the component units.

• Therefor location independence is a stronger property
than location transparency.

• Most current DFS:s provide a static location transparent
mapping for user level names.

• These systems do not support file migration .

• Only AFS and a few experimental file systems support
location independence and file mobility.

4



Naming Schemes

There are three different approaches to naming schemes in
a DFS:

1. host:local-name. This naming scheme is neither
location transparent nor location independent.

2. As NFS. A client can mount a remote filesystem at an
arbitrary location in its filesystem tree. Only previously
mounted remote directories can be reached in a
transparent way (unless automount is used).

3. A single global file system tree that looks the same on
all machines. Some local files are still needed to
interface local hardware units.

From an administrative point of view, NFS is the most
complex of these methods. The only reliable way to make
all clients look the same is to only allow mounting of a few
central file servers.

5

Implementation Techniques

• Implementation of transparent naming requires a
provision for the mapping of a file name to a physical
location.

• To keep the mapping information at a manageable
volume, sets of files have to be aggregated into
component units and mapping provided at component
unit basis. (compare page tables in virtual memories).

• In UNIX-like systems: subtrees in the file system are
used to group files into component units.

• To enhance the availability of mapping information we
can use replication, local caching, or both.

• Location independence means that the mapping
changes over time. If the mapping information is
replicated, a simple and consistent update of the
information becomes impossible.

• To solve this problem we can use internal low level
location-independent file identifiers . These low level
identifiers identifies to which component unit a file
belongs and the location within the component unit.

• These low level identifiers can be cached and replicated
because they never need to be changed.

• The price is the need for a data base to map component
units to location.

6



Consistency Semantics

Assume that two processes A and B have opened the
same file.

At what time will process A see changes to the file written
by process B?

This depends on which consistency semantics the file
system use.

There are several possibilities:

UNIX Semantics Changes written by process B is
immediately visible to process A

Session Semantics Changes written by B are not
immediately visible to A. When the file is closed by B,
changes will be visible in sessions started later. Process
A that has the file open will still not see the changes.

7

Remote Services

When a client needs service from a server on another
machine, a message need to be sent to the server
demanding the service. The server sends back a message
with the requested data.

A common way to achieve this is Remote Procedure Call
(RPC).

The idea is that an RPC should look like a normal
subroutine call to the client.

Another possibility is to use sockets directly. Sockets used
in the file system code however, have a few disadvantages:

1. Sockets may not be available in all systems

2. Making a connection using sockets requires knowledge
of socket names. This is a type of system configuration
data that should not be compiled into file system code.

8



RPC

• PRC is actually a programming API (Application
Programming Interface). The actual communication still
need to use message passing (and sockets).

• An RPC is translated to a message sent to a certain
port at the server machine.

• A port is the address to a certain process at the server,
for example the file server process.

• When calling local subroutines, the subroutine name is
translated to the memory address of the subroutine by
the linker.

• When using RPC the RPC subroutine instead is
translated to the address of a communication routine
and a message is passed as parameter.

But how shall the client know which port number to use?

Two methods:

1. A static port number is compiled into the communication
routine.

2. Dynamic translation. The system has a server
(portmap) that is called to get the port number for a
specified server. When using portmap every service
calls portmap at startup to register its port number.

9

Caching

• To ensure reasonable performance of a file system,
some form of caching is needed.

• In a local file system the the rationale for caching is to
reduce disk I/O.

• In a distributed file system (DFS) the rationale is to
reduce both network traffic and disk I/O.

• In a DFS the client caches can be located either in the
primary memory or on a disk.

• The server will always keep a cache in primary memory
in the same way as in a local file system.

• The block size of the cache in a DFS can vary from the
size of a disk block to an entire file.

10



Cache Location

Where should the cached data be stored - on disk or in
main memory?

Disk caches have one clear advantage over main-memory
caches: they survive even if the machine crashes.

Main-memory caches have several other advantages:

• They allow diskless workstations.

• Data can be fetched quicker from main memory than
from a disk.

• The server caches will always be in main memory. If the
client caches are located in main-memory a single
caching mechanism can be built for both server and
client.

The technology trend towards larger and less expensive
memory have reduced the need for disk caches.

If a disk cache is used, a main-memory cache is still
needed for performance reasons, thus in this case both
types of cache will be used.

11

Cache Update Policy

The policy used to write modified data back to the server’s
master copy has a critical effect on the system’s
performance and reliability.

Update policies:

• Write-through. The simplest and most reliable strategy.
Write operations must wait until the data is written to the
server. The effect is that the cache is only used for read
operations.

• Delayed write. Modifications are written to the cache
and then written to the server at a later time. Write
operations becomes quicker and if data are overwritten
before they are sent to the server only the last update
need to be written to the server.

• Write-on-close. All the time the file is open, the local
cache is used. Only when the file is closed, data is
written to the file server. For files that are open for long
time periods and frequently modified, this gives better
performance than delayed write. Used by the Andrew
file system.

12



Cache Consistency

Whenever caches are used, a method is needed to verify
that the content in the cache is consistent with the master
copy.

This problem is more difficult in a DFS than in a local
filesystem because every client has its own cache. In a
local file system all processes shares the cache.

There are two approaches to verifying the validity of
cached data:

1. Client-initiated. The client initiates a validity check in
which it contacts the server and checks whether the
cache is consistent with the master copy. Choosing the
frequency of validating is the problem. If validation is
done to often both the network and the server may be
heavily loaded.

2. Server-initiated. The server records, for each client,
the files that it is caching. Inconsistency is possible
every time a file is modified if the file is cached by other
clients. Every time a file is updated a message is sent
to the clients that have the file cached that the cache is
invalid. If session semantics is used validation
messages is only needed when a file is closed. If UNIX
semantics is used much more frequent validation is
needed.

13

Comparison of Caching and Remote Service

Remote service means that no cache is used and all
requests are sent to the server.

Advantages and disadvantages:

• When caching is used, the access time is reduced. Also
the amount of data transported between the client and
server is reduced, lowering the load at both the network
and the server.

• The network overhead is lower when big blocks are
transfered, as is done when caching is used.

• Caching allows for the use of a more optimized
inter-machine interface since fixed size big blocks can
be used.

• The cache-consistency problem is the major drawback
of caching. When writes are frequent, the messages
needed to keep the caches consistent may impose a
considerable load on the network and the server.

14



Stateless Versus Stateful Server

• In all communication protocols that use a connection
mechanism, state information for the connection is
stored at the server as long as the connection is valid.

• Examples of state information are descriptors for open
files and read/write position pointers.

• A stateless server do not store state information
concerning clients. This requires that a datagram
protocol is used where every packet has complete
information regarding the request.

• The advantage with storing state information is
improved performance.

• The disadvantage with state information is that it
creates problems if either a client or a server crashes.

• If a server crashes the state information is lost and have
to be recreated in some way.

• If a client crashes the server need to detect this so that
it can reclaim space allocated to storing the state of
crashed client processes.

15

Stateless Server

• A stateless server avoids the problems related to
crashes. A client just retransmits requests if it get no
response.

• The price for the more robust stateless server is
reduced performance and some constraints on the
design of the DFS.

• Because a client resends a message if it do not get an
answer in a specified time, the server may receive the
same request several times.

• This means that the operations must be idempotent,
that is they must give the same result if executed
several times.

• Self-contained read and write operations have this
property if they use an absolute file position.

• Destructive operations such as remove are more
problematic.

• Server initiated methods for cache validation are
inherently stateful and cannot be used.

• UNIX read/write operations with file descriptors and
implicit file positions are inherently stateful and cannot
be used directly to a stateless server.

16


